对于n个物体,一次最多只能拿m个。先手,后手获胜?
明显可知:n=m+1,后手获胜。
假设先手拿了k个,一定有剩余且少于m个,所以后手必胜。
那么对于:n=k(m+1),也必定是后手获胜。
假设先手每次拿了k(<m)个,后手一定可以将状态再次转换为必胜态。
对于:n=k(m+1)+x,(x<m+1),必定是先手获胜。
先手第一次拿走x个后,局面就转换成了先手的必胜态(解释如上)。
所以,n%(m+1)==0 → 后手必胜
否则,先手必胜
对于n个物体,一次最多只能拿m个。先手,后手获胜?
明显可知:n=m+1,后手获胜。
假设先手拿了k个,一定有剩余且少于m个,所以后手必胜。
那么对于:n=k(m+1),也必定是后手获胜。
假设先手每次拿了k(<m)个,后手一定可以将状态再次转换为必胜态。
对于:n=k(m+1)+x,(x<m+1),必定是先手获胜。
先手第一次拿走x个后,局面就转换成了先手的必胜态(解释如上)。
所以,n%(m+1)==0 → 后手必胜
否则,先手必胜