博弈论——巴什博弈

文章探讨了一个游戏规则:n个物体每次最多拿m个,后手在n=m+1时必胜。通过分析先手拿走k个后,后手如何确保胜利或先手如何利用剩余资源取得优势,得出n=k*(m+1)+x(x<m+1)时先手获胜的结论。关键在于n除以m+1的余数决定胜负。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于n个物体,一次最多只能拿m个。先手,后手获胜?

明显可知:n=m+1,后手获胜。

        假设先手拿了k个,一定有剩余且少于m个,所以后手必胜。

那么对于:n=k(m+1),也必定是后手获胜。

        假设先手每次拿了k(<m)个,后手一定可以将状态再次转换为必胜态。

对于:n=k(m+1)+x,(x<m+1),必定是先手获胜。

        先手第一次拿走x个后,局面就转换成了先手的必胜态(解释如上)。

所以,n%(m+1)==0 → 后手必胜

否则,先手必胜

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值