hive的函数

本文详细介绍了Hive中的表生成函数、集合函数、条件控制函数(如CASE WHEN和IF)、分析函数(row_number和sum over)以及级联报表查询和窗口分析函数的使用。通过实例展示了如何操作集合、处理条件、进行分组分析和数据聚合,适合数据处理和报告查询深入理解。
摘要由CSDN通过智能技术生成

目录

表生成函数

集合函数

条件控制函数

分析函数

级联报表查询

窗口分析函数

hive 自定义函数

json解析函数


表生成函数

集合函数

--集合函数
select sort_array(array('y','z','q'));
size(Map<K,V>)--返回一个值
map_keys(Map<K,V>)--返回一个数组
map_values(Map<K,V>)--返回一个数组

条件控制函数

--条件控制函数(case when)
--查询用户id,name,age(如果年龄30以下,显示青年人,30-40,显示中年人,40以上,老年人)
select id,name,info.age,
case 
when info.age<30 then '青年'
when info.age<40 and info.age>30 then '中年人'
else '老年人'
end
from t_user;

+-----+-----------+------+------+--+
| id  |   name    | age  | _c3  |
+-----+-----------+------+------+--+
| 1   | zhangsan  | 18   | 青年   |
| 2   | lisi      | 28   | 青年   |
| 3   | wangwu    | 38   | 中年人  |
| 4   | 赵六        | 26   | 青年   |
| 5   | 钱琪        | 35   | 中年人  |
| 6   | 王八        | 48   | 老年人  |
+-----+-----------+------+------+--+

--IF
--需求,如果主演中有徐峥的就是好片,否则不是
select movie_name,
if(array_contains(actors,'徐峥'),'好片','不是好片'),
first_show
from t_movie;
+-------------+-------+-------------+--+
| movie_name  |  _c1  | first_show  |
+-------------+-------+-------------+--+
| 无名之辈        | 不是好片  | 2018-11-16  |
| 我不是药神       | 好片    | 2018-07-05  |
| 一出好戏        | 不是好片  | 2018-08-10  |
| 中国机长        | 不是好片  | 2018-05-18  |
| 囧妈          | 好片    | 2020-01-25  |
+-------------+-------+-------------+--+

分析函数

--分析函数
--row_number() over()函数:分组TOPN
--有如下数据  vi row_number.dat
1,18,a,male
2,19,b,male
3,22,c,female
4,16,d,female
5,30,e,male
6,26,f,female

--建表
create table t_rn(id int,age int,name string,sex string)
row format delimited fields terminated by ',';

--导数据
load data local inpath '/root/hivetest/row_number.dat' into table t_rn;

--查询出每种性别中年龄最大的两条数据(思路:分组——排序——标记序号)

select id,name,age,sex,
row_number() over(partition by sex order by age desc) as rn
from t_rn;

+-----+-------+------+---------+-----+--+
| id  | name  | age  |   sex   | rn  |
+-----+-------+------+---------+-----+--+
| 6   | f     | 26   | female  | 1   |
| 3   | c     | 22   | female  | 2   |
| 4   | d     | 16   | female  | 3   |
| 5   | e     | 30   | male    | 1   |
| 2   | b     | 19   | male    | 2   |
| 1   | a     | 18   | male    | 3   |
+-----+-------+------+---------+-----+--+

select id,name,age,sex
from
(select id,name,age,sex,
row_number() over(partition by sex order by age desc) as rn
from t_rn) tmp
where rn<3;

+-----+-------+------+---------+--+
| id  | name  | age  |   sex   |
+-----+-------+------+---------+--+
| 6   | f     | 26   | female  |
| 3   | c     | 22   | female  |
| 5   | e     | 30   | male    |
| 2   | b     | 19   | male    |
+-----+-------+------+---------+--+

级联报表查询

--级联报表查询
--数据 vi accu.dat
A,2015-01,5
A,2015-01,15
B,2015-01,5
A,2015-01,8
B,2015-01,25
A,2015-01,5
C,2015-01,10
...
--建表
create table t_access_times(name string,month string,times int)
row format delimited fields terminated by ',';

--导数据
load data local inpath '/root/hivetest/accu.dat' into table t_access_times;

--查询每个人当月累计次数

--1.先查出每个人每个月的次数并存成一张新表(总额表)

create table t_access_number
as
select name,month,sum(times) as amount
from t_access_times
group by name,month;

+-----------------------+------------------------+-------------------------+--+
| t_access_number.name  | t_access_number.month  | t_access_number.amount  |
+-----------------------+------------------------+-------------------------+--+
| A                     | 2015-01                | 33                      |
| A                     | 2015-02                | 10                      |
| A                     | 2015-03                | 20                      |

| B                     | 2015-01                | 30                      |
| B                     | 2015-02                | 15                      |
| B                     | 2015-03                | 45                      |

| C                     | 2015-01                | 30                      |
| C                     | 2015-02                | 40                      |
| C                     | 2015-03                | 30                      |
+-----------------------+------------------------+-------------------------+--+

--2.将新表(总额表)自连接
select name,month,sum(b_amount) as accumulate
from
(select a.name as name,a.month as month,b.amount as b_amount
from t_access_number a left join t_access_number b
on a.name=b.name
where b.month<=a.month) tmp
group by name,month;

+-------+----------+-------------+--+
| name  |  month   | accumulate  |
+-------+----------+-------------+--+
| A     | 2015-01  | 33          |
| A     | 2015-02  | 43          |
| A     | 2015-03  | 63          |
| B     | 2015-01  | 30          |
| B     | 2015-02  | 45          |
| B     | 2015-03  | 90          |
| C     | 2015-01  | 30          |
| C     | 2015-02  | 70          |
| C     | 2015-03  | 100         |
+-------+----------+-------------+--+

窗口分析函数

--窗口分析函数
--求出每个人截至到每个月的总额
--sum()over()函数:可以实现窗口中进行逐行累加
select name,month,amount,
sum(amount)over(partition by name order by month rows between unbounded preceding and current row) as accumlate
from t_access_number;

+-------+----------+---------+------------+--+
| name  |  month   | amount  | accumlate  |
+-------+----------+---------+------------+--+
| A     | 2015-01  | 33      | 33         |
| A     | 2015-02  | 10      | 43         |
| A     | 2015-03  | 20      | 63         |
| B     | 2015-01  | 30      | 30         |
| B     | 2015-02  | 15      | 45         |
| B     | 2015-03  | 45      | 90         |
| C     | 2015-01  | 30      | 30         |
| C     | 2015-02  | 40      | 70         |
| C     | 2015-03  | 30      | 100        |
+-------+----------+---------+------------+--+

hive 自定义函数

--hive 自定义函数
/*
有如下json数据:rating.json
{"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}
{"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"}
{"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"}
{"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"}

需要导入hive中进行数据分析
*/

--建表映射上述数据
create table t_ratingjson(json string);
--导数据
load data local inpath '/root/hivetest/rating.json' into table t_ratingjson;

--想把上面的原始数据变成如下形式:
	1193,5,978300760,1
	661,3,978302109,1
	914,3,978301968,1
	3408,4,978300275,1

--思路:如果能够定义一个json解析函数
create table t_rate
as
select myjson(json,1) as movie,cast(myjson(json,2) as int) as rate,myjson(json,3) as ts,myjson(json,4) as uid from t_ratingjson;

select * from t_rate;
+---------------+--------------+------------+-------------+--+
| t_rate.movie  | t_rate.rate  | t_rate.ts  | t_rate.uid  |
+---------------+--------------+------------+-------------+--+
| 1193          | 5            | 978300760  | 1           |
| 661           | 3            | 978302109  | 1           |
| 914           | 3            | 978301968  | 1           |
| 3408          | 4            | 978300275  | 1           |
| 2355          | 5            | 978824291  | 1           |
| 1197          | 3            | 978302268  | 1           |
| 1287          | 5            | 978302039  | 1           |
| 2804          | 5            | 978300719  | 1           |
| 594           | 4            | 978302268  | 1           |
| 919           | 4            | 978301368  | 1           |

--解决:
--hive中如何定义自己的函数:
--1、先写一个java类(extends UDF,重载方法public C evaluate(A a,B b)),实现你所想要的函数的功能(传入一个json字符串和一个脚标,返回一个值)
--2、将java程序打成jar包,上传到hive所在的机器
--3、在hive命令行中将jar包添加到classpath :    
			hive>add jar /root/hivetest/myjson.jar;
--4、在hive命令中用命令创建一个函数叫做myjson,关联你所写的这个java类
			hive> create temporary function myjson as 'cn.hive.json.MyJsonParser';

--查询每个人评论过几部电影
select uid,count(1)
from t_rate
group by uid limit 20;

+-------+-------+--+
|  uid  |  _c1  |
+-------+-------+--+
| 1     | 53    |
| 10    | 401   |
| 100   | 76    |
| 1000  | 84    |
| 1001  | 377   |
| 1002  | 66    |
| 1003  | 29    |
| 1004  | 481   |
| 1005  | 92    |
| 1006  | 44    |
| 1007  | 32    |
| 1008  | 50    |
| 1009  | 52    |
| 101   | 106   |
| 1010  | 1004  |

json解析函数

--json解析函数
select json_tuple(json,'movie','rate','timeStamp','uid')
as (movie,rate,time,uid)
from t_ratingjson limit 20;

+--------+-------+------------+------+--+
| movie  | rate  |    time    | uid  |
+--------+-------+------------+------+--+
| 1193   | 5     | 978300760  | 1    |
| 661    | 3     | 978302109  | 1    |
| 914    | 3     | 978301968  | 1    |
| 3408   | 4     | 978300275  | 1    |
| 2355   | 5     | 978824291  | 1    |
| 1197   | 3     | 978302268  | 1    |
| 1287   | 5     | 978302039  | 1    |

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醪糟小丸子

小小帮助,不足挂齿

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值