将复杂事实具象成简单符号是人类最基本的思维方法。**拓扑**的提出和应用也是这一思维方法的延伸和例证。
**拓扑学在各领域的应用**
一、建筑领域
“几何学在建筑设计过程中扮演着重要的角色”,这是国内外建筑师们达成的共识。拓扑学作为现代几何学的分支,在建筑设计领域也发挥着重要作用。
拓扑学中有些内容能够直接应用于建筑设计的造型(如:图论、纽结理论),而有些几何学特性则渗透到建筑空间中,成为空间发展的理论基础(如:连通性、拓扑嵌入)。
拓扑学被引入建筑学,打破了静止、确定的建筑形态一统天下的局面,为建筑设计开辟了新的发展方向——动感、连续、变化的形体和空间。
二、3D建模领域
在3D建模领域,拓扑学的意义则在于用少的面数表达和高面数模型相似或相同的效果。
简单的说,就是通过重新优化点线面,在原始基础上进行模型的重新绘制,产生细节足够而且面数非常少的模型。
有人甚至直接把3D世界里的拓扑应用看成是一种高级的择优布线方式。一方面,让模型变小,便于高级动画制作和更多场景展示;另一方面,拓扑的加入也是为了简化流程,它与UV制作、变形动画、平滑细分等工作强相关。
所谓的拓扑轻量化即使用最少、最合适的点线面去表现并重构一个和原模型类似的同一体,再对重构的模型进行减面、展UV和烘焙等操作。
拓扑轻量化不仅能实现大量级模型的全网多端展示与应用,而且用户能够选择是否保留原始模型的层级结构及UV信息。这是进行轻量化处理过程中不仅对整个模型进行了拓扑,同