B
题意
a为数组中最小的未出现的非负整数,b为整个数组的异或和,问满足条件的数组的最小长度ans是多少
思路
首先可以知道ans>=a,不妨设0~a-1的异或和,接下来分3种情况讨论:
1是c=b,则ans=a
2是c!=b,则我们要让c异或上某个值d得到b,如果d不是a的话,我们直接把d添加进数组就OK,
3否则,就要用另外两个值异或一下得到a再去和c异或得到b,因为a不能出现在数组中,这种情况就是ans=a+2.
^的知识点
^异或,exclusive OR,xor(同为0,异为1)
0^0=0
1^0=1
0^1=1
1^1=0
a^b=c---->>
a^c=b
可判断是否相等 i^i=0
#include<bits/stdc++.h>
using namespace std;
long long c[300010];
int main()
{
int t;
cin>>t;
for(int i=1;i<300000;i++)
c[i]=c[i-1]^i;
while(t--)
{
int a,b;
cin>>a>>b;
if(c[a-1]==b)cout<<a<<endl;
else if(c[a-1]^b^a)cout<<a+1<<endl;//c[a-1]^b得到d,d不等于a
else cout<<a+2<<endl;
}
return 0;
}
C
题意
给你一个数n,问有多少对(a,b)在新定义下满足a+b=n,((a,b)和(b,a)算作不同方案)
思路
这与平时的加法运算不太一样,奇数位对奇数位进位,偶数位对偶数位进位,所以我们扫描整个n,将奇偶数位的数分别抽出来,称为odd,even,一个数x,可以由(0,x),(1,x-1) , (2,x-2) , ……(x-1,1) ,(x,0)共x+1种方案组成,所以答案即为(odd+1)*(even+1)
但是因为(a,b)为正整数对,因此,答案为(odd+1)x(even+1)-2
比如,2021,奇数位与偶数位组成的数字分别为22和01,22的组成方式有23种,1的话有2种,但(0,2021)与(2021,0)不符合题意,所以答案为23x2-2=44种
#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
string n;
cin>>t;
while(t--)
{
cin>>n;
int a=0,b=0;
for(int i=0;i<n.size();i++)//n.length(),比如100,得3
{
if(i&1)
a = a*10+n[i]-'0';
else
b = b*10+n[i]-'0';
}
cout<<(a+1)*(b+1)-2<<endl;
}
return 0;
}
#include <bits/stdc++.h>
using namespace std;
int main(){
int t;
cin>>t;
while(t--){
int n;
cin>>n;
int a=0,b=0;
int i=0;
while(n){
a+=(n%10)*pow(10,i);//10^i
n/=10;
b+=(n%10)*pow(10,i);
n/=10;
i++;
}
int ans=(a+1)*(b+1)-2;
cout<<ans<<endl;
}
return 0;
}