C
题意:
然后再回到题目,
比如上图,无论我的5放到了哪里,都不会影响这个区间 [L,R]是否全部出现。
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,mod=1e9+7;
const int INF=0x3f3f3f3f;
int a[N],pos[N];
int main()
{
int t;
cin>>t;
while(t--){
int n;
cin >> n;
for (int i = 1; i <= n; i++)cin >> a[i], pos[a[i]] = i;
int L = n+1, R = -1;
long long ans = 1;
for (int i = 0; i < n; i++) {
if (L <= pos[i] && pos[i] <= R) {
ans *= (R - L + 1 - i);
ans %= mod;
}
L = min(L, pos[i]);
R = max(R, pos[i]);
}
cout << ans << endl;
}
return 0;
}
D
题意
给定一个长度为n的数组,对于相邻两个不相同的元素,直接进行删除,后面的数会紧贴上来,最终不能操作为止,求最终数组长度的最大值,(留下的数组元素都是相同的)
转移方程:dp[j] = max(dp[j], dp[i] + 1) 条件:a[j] == a[i] 且区间[i + 1, j - 1]可以被完全删除。
一段序列能够完全删除的充分必要条件是什么?答案是:该段序列长度为偶数,且出现次数最多的数不能超过原数组长度的一半。怎么理解呢?每次都删除两个元素,因此必须保证偶数,第二点就是每一个数的删除都是伴随的过程,如果出现次数最大的数超过了一半,那么最终一定会剩下两个以上的相同数无法删除。
答案转移:答案并不是从前n个值中取一个最大值,因为我们发现这个操作必须进行到不能操作为止。那么我们就将循环进行到n+1,然后当j == n + 1,此时就不需要a[i] == a[j]这个条件,相当于这个n+1是任意数字,可以和任意数字匹配,最后转移出来的结果才是前n个数被完全删除的最大值,不过记得答案最后要-1,因为我们在转移的时候多加了一个n+1位置上的1。
注意:对于区间中出现最大数的次数我们用一个桶fr[i]来维护。
初始化:对于初始化我们只需要考虑0,1就行。什么位置能取1呢?奇数且前i-1区间能被完全删除的情况下dp[i] = 1
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll NMAX=5e3+5;
ll dp[NMAX],fr[NMAX],a[NMAX];
//dp[i]为前i个元素,进行若干次(消除两个不同元素)的操作后得到的,最长的(留下的都是相同的元素)序列的长度
// 如i:1 2 3 4 5 6 7
//a[i]: 3 3 2 1 3 3 null
//dp[i]:1 2 0 0 3 4 5
//最后得出的结果为5-1=4,4.
void tc()
{
ll n,maxfreq=0;//maxfreq出现频率最高的元素的出现次数
cin>>n;
for(ll i=1;i<=n;i++)
cin>>a[i];
dp[0]=dp[n+1]=0;
for(ll j=1;j<=n;j++)fr[j]=0;//用桶来记录每个元素出现的次数(频率)
for(ll i=1;i<=n+1;i++){
if(i%2&&maxfreq<=i/2)//当i为奇数且a[1]~a[i]中(出现次数最多的)元素的出现次数不超过序列长度(从1到i-1的长度i-1-1+1=i-1)的一半,但这里的i为奇数,所以(i-1)/2==i/2
dp[i]=1;//接上,i为奇数,所以前i-1个元素的个数为偶数,又有maxfreq<=i/2的限制,所以前i-1个元素可以相互消除,如上面的i=5时,a[1]~a[4]可以自己内部相互消除,dp[5]=dp[2]+1=3
else
dp[i]=0;
maxfreq=max(maxfreq,++fr[a[i]]);//记录(出现次数最多的)元素的出现次数
}
for(ll i=1;i<=n;i++){
for(ll j=1;j<=n;j++)fr[j]=0;//这里先置成0
maxfreq=0;
if(dp[i]>0)//这里就是上面置成1的情况,dp[i]>0,说明a[1]~a[i-1]可以自己内部相互消除,这样就可以考虑得出dp[i](留下的都是相同的元素)的最长的序列的长度)
for(ll j=i+1;j<=n+1;j++){//j开到n+1,作为辅助,为了更好求答案
if((j-i)%2&&maxfreq<=(j-i)/2&&(j==n+1||a[i]==a[j]))//a[j-1]到a[i-1]中间有偶数个(包括0)元素,且从a[i+1]到a[j-1]中出现频率最高的元素的出现次数不超过序列长度的一半(j-i)/2,且a[i]==a[j],或者j==n+1(此时是作为一个辅助的,到最后求结果时再减去1即可)
dp[j]=max(dp[j],dp[i]+1);//状态方程
maxfreq=max(maxfreq,++fr[a[j]]);//执行到i时,可以get从 a[i+1]~a[j-1](出现次数最多的)元素的出现次数
}
}
cout<<dp[n+1]-1<<endl;//这里就是那步利用辅助求答案,最后结果-1
}
int main()
{
ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
ll t;cin>>t;
while(t--)
tc();
return 0;
}