从现在起,我的标题不写算法了,因为写不下了;
http://acm.hdu.edu.cn/showproblem.php?pid=6031
就是求解A集合和B集合里面的两点的lca的最深深度;
那么我们先预处理树上倍增的东西(就是第i点向上跳2^j步可以到达的位置);
然后直接二分答案k;
找到AB集合里的点在K深度的祖先;
如果两个集合有交集的话就可以;
#include<bits/stdc++.h>
#define Ll long long
using namespace std;
const int N=1e5+5;
struct cs{int to,nxt;}a[N*2];
int head[N],ll;
int deep[N],f[N][25];
bool vi[N];
int A[N],B[N],aa,bb,q[N],top;
int n,m,x,y,z;
void init(int x,int y){
a[++ll].to=y;
a[ll].nxt=head[x];
head[x]=ll;
}
void dfs(int x,int y,int z){
deep[x]=z; f[x][0]=y;
for(int k=head[x];k;k=a[k].nxt)
if(a[k].to!=y)dfs(a[k].to,x,z+1);
}
void make(){
for(int j=1;j<=20;j++)
for(int i=1;i<=n;i++)
if(f[i][j-1])
f[i][j]=f[f[i][j-1]][j-1];
}
int get(int x,int y){
for(int j=0;y;y>>=1,j++)if(y&1)x=f[x][j];
return x;
}
bool check(int k){
bool ans=0;
for(int i=1;i<=aa;i++)
if(deep[A[i]]>=k){
int v=get(A[i],deep[A[i]]-k);
q[++top]=v; vi[v]=1;
}
for(int i=1;i<=bb;i++)
if(deep[B[i]]>=k)
if(vi[get(B[i],deep[B[i]]-k)])ans=1;
while(top)vi[q[top--]]=0;
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=-1){
memset(head,0,sizeof head);ll=0;
memset(f,0,sizeof f);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
init(x,y);init(y,x);
}
dfs(1,0,1);
make();
while(m--){
int l=1,r=1,mid,ans=0;
scanf("%d",&aa);for(int i=1;i<=aa;i++)scanf("%d",&A[i]),r=max(r,deep[A[i]]);
scanf("%d",&bb);for(int i=1;i<=bb;i++)scanf("%d",&B[i]);
while(r>=l){
mid=l+r>>1;
if(check(mid))ans=max(ans,mid),l=mid+1;else r=mid-1;
}
printf("%d\n",ans);
}
}
}
这里的二分的范围一定要选对;
如果直接1~20进行二分的话会萎的;
二分的范围一定要精确,不然的话就不满足单调性;