这道题是 prototype 原型,可以衍生出一系列的题,虽然是easy,但是要考虑细节,抓住其中的要点。
关于path sum就有 5-8 道题,有不同的input形式,常见的是树,还有list in list(金子塔结构,相当于完全树),而树是可以不完整的。这一类题都可以总结到一起。
刚刚写的代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if(root==null) return false;
if(root.left==null && root.right==null ) return root.val==sum;
return hasPathSum(root.left, sum-root.val) || hasPathSum(root.right, sum-root.val);
// 在写上面这个条件时,思考了一下,就是我这里可否合并,比如说target是2,root是2,左子是3,没有右子,那么但递归到右子的时候,就变成了 hasPathSum(0, null),函数应该返回 false,实际应不应该返回false呢?是的,因为pathSum的定义是一定要到叶子节点才是终结,而最后一个return的 assumption就是左右子树肯定一个存在,所以该节点现在不可能为叶子节点。
// 为什么写下这个思考,就是因为后面有一道hard题,是可以在任何节点终结的!!正好符合上面思考的情况。把这两类题目通过这个相关点总结到一起。
}
}
之前的代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if(root==null) return false;
if(root.left==null && root.right==null) return root.val==sum;
else return hasPathSum(root.left, sum-root.val) || hasPathSum(root.right, sum-root.val);
}
}
// 也是一遍写对了,这里增加了一个对leaf节点的判断。而不只是root==null的判断了。
// 规律!!! 1,肯定要对root == null 进行判断!2,root的左右两个子树是否存在的4中情况,可以依次判断,或者综合在一起判断,根据不同的条件写不同的递归式。