第二章 其他的知识点
2.1. import导入模块
2.2. 循环导入
2.3. 作用域
2.4. ==、is
2.5. 深拷贝、浅拷贝
2.6. 进制、位运算
2.7. 私有化
2.8. 属性property
2.1. import导入模块
1. import 搜索路径
import sys sys.path
路径搜索
从上面列出的目录里依次查找要导入的模块文件 ' ' 表示当前路径
程序执行时导入模块路径
sys.path.append('/home/itcast/xxx') sys.path.insert(0, '/home/itcast/xxx') #可以确保先搜索这个路径
In [37]: sys.path.insert(0,"/home/python/xxxx") In [38]: sys.path Out[38]: ['/home/python/xxxx', '', '/usr/bin', '/usr/lib/python35.zip', '/usr/lib/python3.5', '/usr/lib/python3.5/plat-x86_64-linux-gnu', '/usr/lib/python3.5/lib-dynload', '/usr/local/lib/python3.5/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3/dist-packages/IPython/extensions', '/home/python/.ipython']
2. 重新导入模块
模块被导入后,import module不能重新导入模块,重新导入需用
测试模块内容
调用模块中的方法
修改测试模块
重新加载模块
2.2. 循环导入
1. 什么是循环导入
a.py
from b import b print '---------this is module a.py----------' def a(): print("hello, a") b() a()
b.py
from a import a print '----------this is module b.py----------' def b(): print("hello, b") def c(): a() c()
运行python a.py
2. 怎样避免循环导入
程序设计上分层,降低耦合
导入语句放在后面需要导入时再导入,例如放在函数体内导入
2.3. 作用域
什么是命名空间
比如有一个学校,有10个班级,在7班和8班中都有一个叫“小王”的同学,如果在学校的广播中呼叫“小王”时,7班和8班中的这2个人就纳闷了,你是>喊谁呢!!!如果是“7班的小王”的话,那么就很明确了,那么此时的7班就是小王所在的范围,即命名空间
globals、locals
在之前学习变量的作用域时,经常会提到局部变量和全局变量,之所有称之为局部、全局,就是因为他们的自作用的区域不同,这就是作用域
locals
globals
LEGB 规则
Python 使用 LEGB 的顺序来查找一个符号对应的对象
locals -> enclosing function -> globals -> builtins
locals,当前所在命名空间(如函数、模块),函数的参数也属于命名空间内的变量
enclosing,外部嵌套函数的命名空间(闭包中常见)
def fun1(): a = 10 def fun2(): # a 位于外部嵌套函数的命名空间 print(a)
globals,全局变量,函数定义所在模块的命名空间
a = 1 def fun(): # 需要通过 global 指令来声明全局变量 global a # 修改全局变量,而不是创建一个新的 local 变量 a = 2
builtins,内建模块的命名空间。
Python 在启动的时候会自动为我们载入很多内建的函数、类, 比如 dict,list,type,print,这些都位于 __builtin__ 模块中, 可以使用 dir(__builtin__) 来查看。 这也是为什么我们在没有 import任何模块的情况下, 就能使用这么多丰富的函数和功能了。 在Python中,有一个内建模块,该模块中有一些常用函数;在Python启动后, 且没有执行程序员所写的任何代码前,Python会首先加载该内建函数到内存。 另外,该内建模块中的功能可以直接使用,不用在其前添加内建模块前缀, 其原因是对函数、变量、类等标识符的查找是按LEGB法则,其中B即代表内建模块 比如:内建模块中有一个abs()函数,其功能求绝对值,如abs(-20)将返回20。
2.4. ==、is
==、is
总结
is 是比较两个引用是否指向了同一个对象(引用比较)。
== 是比较两个对象是否相等。
2.5. 深拷贝、浅拷贝
1. 浅拷贝
浅拷贝是对于一个对象的顶层拷贝
通俗的理解是:拷贝了引用,并没有拷贝内容
2. 深拷贝
深拷贝是对于一个对象所有层次的拷贝(递归)
进一步理解拷贝
In [23]: a = [11,22,33] In [24]: b = [44,55,66] In [25]: c = (a,b) In [26]: e = copy.deepcopy(c) In [27]: a.append(77) In [28]: a Out[28]: [11, 22, 33, 77] In [29]: b Out[29]: [44, 55, 66] In [30]: c Out[30]: ([11, 22, 33, 77], [44, 55, 66]) In [31]: e Out[31]: ([11, 22, 33], [44, 55, 66]) In [32]: In [32]: In [32]: f = copy.copy(c) In [33]: a.append(88) In [34]: a Out[34]: [11, 22, 33, 77, 88] In [35]: b Out[35]: [44, 55, 66] In [36]: c Out[36]: ([11, 22, 33, 77, 88], [44, 55, 66]) In [37]: e Out[37]: ([11, 22, 33], [44, 55, 66]) In [38]: f Out[38]: ([11, 22, 33, 77, 88], [44, 55, 66])
3. 拷贝的其他方式
浅拷贝对不可变类型和可变类型的copy不同
In [88]: a = [11,22,33] In [89]: b = copy.copy(a) In [90]: id(a) Out[90]: 59275144 In [91]: id(b) Out[91]: 59525600 In [92]: a.append(44) In [93]: a Out[93]: [11, 22, 33, 44] In [94]: b Out[94]: [11, 22, 33] In [95]: In [95]: In [95]: a = (11,22,33) In [96]: b = copy.copy(a) In [97]: id(a) Out[97]: 58890680 In [98]: id(b) Out[98]: 58890680
分片表达式可以赋值一个序列
a = "abc" b = a[:]
字典的copy方法可以拷贝一个字典
d = dict(name="zhangsan", age=27) co = d.copy()
有些内置函数可以生成拷贝(list)
a = list(range(10)) b = list(a)
copy模块中的copy函数
import copy a = (1,2,3) b = copy.copy(a)
2.6. 进制、位运算
1、什么是进制
1)理解个X进制的概念 :
每一位 只允许出现 0~X-1 这几个数字,逢X进一,基是X, 每一位有一个权值大小是X的幂次。 其表示的数值可以写成按位权展开的多项式之和。
十进制: 每一位只允许出现0~9这十个数字,逢十进1,基是十,每一位数字有一个 权值大小是十的幂次。 >其表示的数值可以写成按位权展开的多项式之和。
二进制: 每一位只允许出现0~1这二个数字,逢二进1,基是 二, 每一位数字有一个权值大小是二的幂次。 >其表示的数值可以写成按位权展开的多项式之和。
八进制:
十六进制
2)
假如用两个字节表示 一个整数, 如下:
十进制数字1 的二进制表现形式: 0000 0000 0000 0001 十进制数字2 的二进制表现形式: 0000 0000 0000 0010
如何表示二进制数的正负?
3)有符号数和无符号数的概念
规则:把二进制数中的最高位(最左边的那位)用作符号位
对于有符号数,最高位被计算机系统规定为符号位(0为正,1为负) 对于无符号数,最高位被计算机系统规定为数据位
按照这种说法,比如有符号数 +2 -2 的原码形式:
+2 = 0000 0000 0000 0010 -2 = 1000 0000 0000 0010 真值 机器数 +1 = 0000 0000 0000 0001 -1 = 1000 0000 0000 0001 ----------------------------------------- 1000 0000 0000 0010
-1+1 的结果?
-1+1 = 1000 0000 0000 0010 —-》 -2
不等于0,按理说-1+1等于0才对,为什么会是-2呢?
规则
数字在计算机中,是用二进制补码的形式来保存的,因此-1 +1需要按照补码进行相加才是正确的结果
2、原码、反码、补码
1)如何计算补码?
规则: 正数:原码 = 反码 = 补码 负数:反码 = 符号位不变,其他位取反 补码 = 反码+1
1 的原码:0000 0000 0000 0001 -1的原码:1000 0000 0000 0001 -1的反码:1111 1111 1111 1110 -1的补码:1111 1111 1111 1111
重新计算 -1+1 结果
1111 1111 1111 1111 0000 0000 0000 0001 --------------------------- 0000 0000 0000 0000
2)从补码转回原码
负数补码转换原码的规则:
原码 = 补码的符号位不变 -->数据位取反--> 尾+1 -1的补码:1111 1111 1111 1111 取反:1000 0000 0000 0000 -1的原码:1000 0000 0000 0001
【了解】
可以把减法用加法来算,只需设计加法器就好了。运算的时候都是用补码去运算的。 2-1 = 2+(-1)=0000 0000 0000 0010 +1111 1111 1111 1111
【了解】
为何要使用原码, 反码和补码 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢? 首先, >因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对应加减,但是对于计算机,加减乘数已经是最>基础的运算, >要设计的尽量简单。计算机辨别”符号位”显然会让计算机的基础电路设计变得十分复杂!于是人们想出了将符号位也参与运>算的方法. >我们知道,根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, >这样计算机运算的设计就更简单了.于是人们开始探索 将符号位参与运算, 并且只保留加法的方法
3. 进制间转换
#10进制转为2进制 >>> bin(10) '0b1010' #2进制转为10进制 >>> int("1001",2) 9 #10进制转为16进制 >>> hex(10) '0xa' #16进制到10进制 >>> int('ff', 16) 255 >>> int('0xab', 16) 171 #16进制到2进制 >>> bin(0xa) '0b1010' >>> #10进制到8进制 >>> oct(8) '010' #2进制到16进制 >>> hex(0b1001) '0x9'
4. 位运算
看如下示例:
如果有一个十进制数 5,其二进制为:0000 0101 把所有的数向左移动一位 其结果为: 0000 1010 想一想:二进制 0000 1010 十进制是多少呢???其答案为10,有没有发现是5的2倍呢! 再假设有一个十进制数 3, 其二进制 为:0000 0011 把所有的数向左移动一位 其结果为: 0000 0110 二进制0000 0110 的十进制为6,正好也是3的2倍
通过以上2个例子,能够看出,把一个数的各位整体向左移动一个位,就变成原来的2倍
那么在Python中,怎样实现向左移动呢?还有其他的吗???
<1>位运算的介绍
& 按位与 | 按位或 ^ 按位异或 ~ 按位取反 << 按位左移 >> 按位右移
用途: 直接操作二进制,省内存,效率高
<2>位运算
1)<< 按位左移
各二进位全部左移n位,高位丢弃,低位补0 x << n 左移 x 的所有二进制位向左移动n位,移出位删掉,移进的位补零
【注意事项】
a. 左移1位相当于 乘以2 用途:快速计算一个数乘以2的n次方 (8<<3 等同于8*2^3) b.左移可能会改变一个数的正负性
2)>> 右移
各二进位全部右移n位,保持符号位不变 x >> n x的所有二进制位向右移动n位,移出的位删掉,移进的位补符号位 右移不会改变一个数的符号
【注意事项】
右移1位相当于 除以2 x 右移 n 位就相当于除以2的n次方 用途:快速计算一个数除以2的n次方 (8>>3 等同于8/2^3)
3)& 按位与
全1才1否则0 :只有对应的两个二进位均为1时,结果位才为1,否则为0 用6和3这个例子。不要用9 和13的例子
4) | 按位或
有1就1 只要对应的二个二进位有一个为1时,结果位就为1,否则为0
5) ^ 按位异或
不同为1 当对应的二进位相异(不相同)时,结果为1,否则为0
6) ~ 取反
~9 = -10
【为什么9取反变成了-10的说明】:
9的原码 ==> 0000 1001 因为正数的原码=反码=补码,所以在 真正存储的时候就是0000 1001 接下来进行对9的补码进行取反操作 进行取反==> 1111 0110 这就是对9 进行了取反之后的补码 既然已经知道了补码,那么接下来只要转换为 咱们人能识别的码型就可以,因此按照规则 ,把这个1111 0110 这个补码 转换为原码即可 符号位不变,其它位取反==> 1000 1001 然后+1 ,得到原码 =======>1000 1010 这就是 -10
【扩展】
1)任何数和1进行&操作,得到这个数的最低位 数字&1 = 数字的二进制形式的最低位 2)位运算优先级
2.7. 私有化
xx: 公有变量 _x: 单前置下划线,私有化属性或方法,from somemodule import *禁止导入,类对象和子类可以访问 __xx:双前置下划线,避免与子类中的属性命名冲突,无法在外部直接访问(名字重整所以访问不到) __xx__:双前后下划线,用户名字空间的魔法对象或属性。例如:__init__ , __ 不要自己发明这样的名字 xx_:单后置下划线,用于避免与Python关键词的冲突
通过name mangling(名字重整(目的就是以防子类意外重写基类的方法或者属性)如:_Class__object)机制就可以访问private了。
#coding=utf-8 class Person(object): def __init__(self, name, age, taste): self.name = name self._age = age self.__taste = taste def showperson(self): print(self.name) print(self._age) print(self.__taste) def dowork(self): self._work() self.__away() def _work(self): print('my _work') def __away(self): print('my __away') class Student(Person): def construction(self, name, age, taste): self.name = name self._age = age self.__taste = taste def showstudent(self): print(self.name) print(self._age) print(self.__taste) @staticmethod def testbug(): _Bug.showbug() #模块内可以访问,当from cur_module import *时,不导入 class _Bug(object): @staticmethod def showbug(): print("showbug") s1 = Student('jack', 25, 'football') s1.showperson() print('*'*20) #无法访问__taste,导致报错 #s1.showstudent() s1.construction('rose', 30, 'basketball') s1.showperson() print('*'*20) s1.showstudent() print('*'*20) Student.testbug()
总结
父类中属性名为__名字的,子类不继承,子类不能访问 如果在子类中向__名字赋值,那么会在子类中定义的一个与父类相同名字的属性 _名的变量、函数、类在使用from xxx import *时都不会被导入
2.8. 属性property
1. 私有属性添加getter和setter方法
class Money(object):
def __init__(self):
self.__money = 0
def getMoney(self):
return self.__money
def setMoney(self, value):
if isinstance(value, int):
self.__money = value
else:
print("error:不是整型数字")
2. 使用property升级getter和setter方法
class Money(object):
def __init__(self):
self.__money = 0
def getMoney(self):
return self.__money
def setMoney(self, value):
if isinstance(value, int):
self.__money = value
else:
print("error:不是整型数字")
money = property(getMoney, setMoney)
运行结果:
In [1]: from get_set import Money
In [2]:
In [2]: a = Money()
In [3]:
In [3]: a.money
Out[3]: 0
In [4]: a.money = 100
In [5]: a.money
Out[5]: 100
In [6]: a.getMoney()
Out[6]: 100
3. 使用property取代getter和setter方法
@property成为属性函数,可以对属性赋值时做必要的检查,并保证代码的清晰短小,主要有2个作用
将方法转换为只读 重新实现一个属性的设置和读取方法,可做边界判定
class Money(object): def __init__(self): self.__money = 0 @property def money(self): return self.__money @money.setter def money(self, value): if isinstance(value, int): self.__money = value else: print("error:不是整型数字") 运行结果 In [3]: a = Money() In [4]: In [4]: In [4]: a.money Out[4]: 0 In [5]: a.money = 100 In [6]: a.money Out[6]: 100