本文就是通过分析计算用户评论对用户做一个偏好计算,然后进行推荐
对用户旅游景点的在线评论信息进行获取和预处理,再利用情感强度分析法确定每条评论相对景点各属性的评价标度,然后依据处理后的在线评论信息计算用户对景点各属性的权重,最后排序给出推荐
- 数据获取
- Jieba分词 (可以考虑准确率更高的HanLp)
- 属性同义词合并
- 计算对属性的评价分值 (情感词典)
- 计算用户对属性的权重
- TOPSIS排序
相关查询:
TOPSIS https://zhuanlan.zhihu.com/p/37738503
本文在总结展望部分提到了冷启动,之前看的文章冷启动的时候就推最热,然后用户有了行为之后再通过用户行为来进行推荐调整。
总结:本文的推荐算法不是协同过滤,也不是行为预测,是通过计算评论对用户做一个偏好计算。但是其实感觉现在写评论的人其实比较少,大部分用户都不太会写评论了,如果是旅游的话如果可以收集用户的朋友圈信息应该会比评论信息更加丰富,而且情感表达应该会更加二分化,有喜欢所以发朋友圈安利记录的也有不喜欢来吐槽的,但是这个要用到腾讯的数据了。如果是我来做我会用协同过滤,现在大部分人旅游其实是都会做攻略,然后跟着网红路线走,所以做基于人的相似度计算,推荐相同兴趣的大众行走路线应该更好。