概率导论(Introduction to Probability, 2E)学习笔记 Part Ⅱ

笔记内容基于Introduction to Probablity, Second Edition

因笔者为初学者,故内容不会面面俱到

若有表述错误还望直接指出

——2022.3

离散随机变量

基础

随机变量是试验结果对应的实值函数。

随机变量函数定义了一个新的随机变量。

研究随机变量,可定义平均量,如均差方差

如果一个随机变量的值域是一个有限集合/可数多个的无限集合,则这个随机变量是离散随机变量

离散随机变量有对应的分布列,用来表示每一个取值的概率。
离散随机变量的函数是一个离散随机变量,其分布列可从原随机变量分布列得出。

分布式

  • 分布列:离散随机变量取值概率
    e.g.随机变量 X X X 有分布列 p X p_X pX.
    p X ( x ) = P ( X = x ) p_X(x)=P(X=x) pX(x)=P(X=x)

e.g.在抛掷一枚均匀硬币的两次试验中: X X X是正面朝上的次数:
p X ( x ) = { 1 / 4 , ( x = 0 , 2 ) 1 / 2 , ( x = 1 ) 0 p_X(x)=\displaystyle\begin{cases}1/4, (x=0,2)\\1/2, (x=1)\\0\end{cases} pX(x)=1/4,(x=0,2)1/2,(x=1)0
对于分布列: ∑ x p X ( x ) = 1 \displaystyle\sum_x p_X(x)=1 xpX(x)=1, 同理: P ( X ∈ S ) = ∑ x ∈ S p X ( x ) P(X\in S)=\displaystyle\sum_{x\in S} p_X(x) P(XS)=xSpX(x)

伯努利随机变量

⭐伯努利型随机变量非常简洁:
p X ( k ) = { p , ( k = 1 ) 1 − p , ( k = 0 ) p_X(k)=\begin{cases}p, (k=1)\\1-p, (k=0)\end{cases} pX(k)={p,(k=1)1p,(k=0)
用于刻画只有两个试验结果的概率模型.

二项随机变量

将伯努利随机变量不断重复叠加。e.g.将一枚硬币抛掷 n n n次,正面出现概率为 p p p, 出现正面的次数 X X X,就是一个二项随机变量
对于 X X X, 有:
∑ k = 0 n ( n k ) p k ( 1 − p ) n − k = 1 \displaystyle\sum_{k=0}^n\scriptstyle\left(\begin{gathered}n\\ k\end{gathered}\right)\displaystyle p^k(1-p)^{n-k}=1 k=0n(nk)pk(1p)nk=1

几何随机变量

X X X 为连续抛掷一枚硬币,知道第一次出现正面的次数. X X X是一个几何随机变量.
p X ( k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 … p_X(k)=(1-p)^{k-1}p, k=1,2,3\dots pX(k)=(1p)k1p,k=1,2,3

泊松随机变量

随机变量 X X X分布列:
p X ( k ) = e − λ λ k k ! , k = 0 , 1 , 2 , … \displaystyle p_X(k)=e^{-\lambda}\frac{\lambda^k}{k!}, k=0,1,2,\dots pX(k)=eλk!λk,k=0,1,2,
λ \lambda λ是刻画分布列取正值的参数, X X X泊松随机变量. 泊松随机变量 X X X的分布列是二项随机变量分布列很好的逼近:
e − λ λ k k ! ≈ n ! k ! ( n − k ) ! p k ( 1 − p ) n − k , k = 0 , 1 , 2 , … , n e^{-\lambda}\frac{\lambda^k}{k!}\approx\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}, k=0,1,2,\dots,n eλk!λkk!(nk)!n!pk(1p)nk,k=0,1,2,,n
其中 λ = n p \lambda=np λ=np.

随机变量的函数

随机变量的函数本身也是一个随机变量:
p Y ( y ) = ∑ { x ∣ g ( x ) = y } p X ( x ) p_Y(y)=\sum_{\{x|g(x)=y\}}p_X(x) pY(y)={xg(x)=y}pX(x)

期望、均值、方差

X X X的分布列给出了所有 X X X的取值对应的概率,我们通过期望来代表随机变量 X X X的取值,数值上就是 X X X所有取值及其概率的加权平均:
E [ X ] = ∑ x x p X ( x ) \text{E}[X]=\sum_x xp_X(x) E[X]=xxpX(x)
这一数值也是分布列 p X p_X pX的重心。

方差、矩和随机变量的函数的期望规则

随机变量 X X X n n n阶矩 E [ X n ] \text{E}[X^n] E[Xn] X n X^n Xn的期望值,这样形式的均值本身就是一阶矩。

  • 方差 var ( X ) = E [ ( X − E [ X ] ) 2 ] \text{var}(X)=\text{E}[(X-\text{E}[X])^2] var(X)=E[(XE[X])2], 方差提供了 X X X在期望周围分散程度的一个测度。
  • 标准差是另一测度: σ X = var ( X ) \sigma_X=\sqrt{\text{var}(X)} σX=var(X) .

⭐标准差的量纲与 X X X相同,而标准差为原量纲的平方。

简化期望算法:
设随机变量 X X X分布列为 p X p_X pX, 设 g ( X ) g(X) g(X) X X X的一个函数,则 g ( X ) g(X) g(X)的期望:
E [ g ( X ) ] = ∑ x g ( x ) p X ( x ) \text{E}[g(X)]=\sum_x g(x)p_X(x) E[g(X)]=xg(x)pX(x)
X X X的方差:
var ( X ) = E [ ( X − E [ X ] ) 2 ] = ∑ x ( x − E [ X ] ) 2 p X ( x ) \text{var}(X)=\text{E}[(X-\text{E}[X])^2]=\sum_x(x-\text{E}[X])^2p_X(x) var(X)=E[(XE[X])2]=x(xE[X])2pX(x)
其平方根为标准差.

均值和方差的性质

随机变量的线性函数均值和方差
对于随机变量 X X X, 有 Y = a X + b Y=aX+b Y=aX+b, 其中 a , b a,b a,b为给定的常数:
E [ Y ] = a E [ X ] + b , var ( Y ) = a 2 var ( X ) \text{E}[Y]=a\text{E}[X]+b, \text{var}(Y)=a^2\text{var}(X) E[Y]=aE[X]+b,var(Y)=a2var(X)
用矩表示方差: var ( X ) = E [ X 2 ] − ( E[X] ) 2 \text{var}(X)=\text{E}[X^2]-(\text{E[X]})^2 var(X)=E[X2](E[X])2
仅当 g ( X ) g(X) g(X)是一个线性函数, E[g(X)] = g ( E [ X ] ) \text{E[g(X)]}=g(\text{E}[X]) E[g(X)]=g(E[X])

常用的随机变量的均值和方差

e.g.伯努利随机变量的均值和方差:抛掷一枚硬币,正面出现概率为 p p p, 伯努利随机变量分布列为:
p X ( k ) = { p , k = 1 1 − p , k = 0 p_X(k)=\begin{cases}p, k=1\\1-p, k=0\end{cases} pX(k)={p,k=11p,k=0
则:
E [ X ] = 1 ⋅ p + 0 ⋅ ( 1 − p ) = p E [ X 2 ] = 1 2 ⋅ p + 0 2 ⋅ ( 1 − p ) = p var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 = p − p 2 = p ( 1 − p ) \begin{array}{rcl}\text{E}[X]&=&1\cdot p+0\cdot(1-p)=p\\\text{E}[X^2]&=&1^2\cdot p+0^2\cdot(1-p)=p\\\text{var}(X)&=&E[X^2]-(\text{E}[X])^2=p-p^2=p(1-p)\end{array} E[X]E[X2]var(X)===1p+0(1p)=p12p+02(1p)=pE[X2](E[X])2=pp2=p(1p)

e.g.离散均匀随机变量:抛掷六面均匀的骰子,其分布列为:
p X ( k ) = { 1 / 6 , k = 1 , 2 , 3 , 4 , 5 , 6 0 , p_X(k)=\begin{cases}1/6, k=1,2,3,4,5,6\\0, \end{cases} pX(k)={1/6,k=1,2,3,4,5,60,
∵ \because 分布列相对于3.5对称, ∴ E [ X ] = 3.5 \therefore \text{E}[X]=3.5 E[X]=3.5
var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 = 1 6 ( 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 ) − ( 3.5 ) 2 = 35 12 \begin{array}{rcl}\text{var}(X)&=&\text{E}[X^2]-(\text{E}[X])^2\\\\&=&\displaystyle\frac{1}{6}(1^2+2^2+3^2+4^2+5^2+6^2)-(3.5)^2\\\\&=&\displaystyle\frac{35}{12}\end{array} var(X)===E[X2](E[X])261(12+22+32+42+52+62)(3.5)21235

离散均匀随机变量由一般到特殊. 当离散均匀随机变量 X X X有值域 [ a , b ] [a,b] [a,b]且取每个整数的概率都相等,它的分布列为:
p X ( k ) = { 1 b − a + 1 , k = a , a + 1 , a + 2 , … , b 0 , p_X(k)=\begin{cases}\displaystyle\frac{1}{b-a+1}, k=a,a+1,a+2,\dots,b\\0, \end{cases} pX(k)=ba+11,k=a,a+1,a+2,,b0,
均值为 E [ X ] = a + b 2 \text{E}[X]=\displaystyle\frac{a+b}{2} E[X]=2a+b
a = 1 , b = n a=1, b=n a=1,b=n, 则:
E [ X 2 ] = 1 n ∑ k = 1 n k 2 = 1 6 ( n + 1 ) ( 2 n + 1 ) \text{E}[X^2]=\frac{1}{n}\sum_{k=1}^n k^2=\frac{1}{6}(n+1)(2n+1) E[X2]=n1k=1nk2=61(n+1)(2n+1)
X X X的方差:
var ( X ) = E [ X 2 ] − ( E [ X ] ) 2 = 1 6 ( n + 1 ) ( 2 n + 1 ) − 1 4 ( n + 1 ) 2 = n 2 − 1 12 \begin{array}{rcl} \text{var}(X)&=&\text{E}[X^2]-(\text{E}[X])^2\\\\ &=&\displaystyle\frac{1}{6}(n+1)(2n+1)-\displaystyle\frac{1}{4}(n+1)^2\\\\ &=&\displaystyle\frac{n^2-1}{12} \end{array} var(X)===E[X2](E[X])261(n+1)(2n+1)41(n+1)212n21
对于一般情况,区间 [ a , b ] [a,b] [a,b]均匀分布平移可以得到区间 [ 1 , b − a + 1 ] [1,b-a+1] [1,ba+1]. 因此, 一般的, X X X的方差只需将上述等式中 n n n替换为 b − a + 1 b-a+1 ba+1即可:
var ( X ) = ( b − a + 1 ) 2 − 1 12 = ( b − a ) ( b − a + 2 ) 12 \text{var}(X)=\displaystyle\frac{(b-a+1)^2-1}{12}=\frac{(b-a)(b-a+2)}{12} var(X)=12(ba+1)21=12(ba)(ba+2)

e.g.泊松随机变量的均值: 设 X X X的分布列为泊松分布列:
p X ( k ) = e − λ λ k K ! , k = 0 , 1 , 2 , … p_X(k)=e^{-\lambda}\frac{\lambda^k}{K!}, k=0,1,2,\dots pX(k)=eλK!λk,k=0,1,2,
λ > 0 \lambda>0 λ>0为常数:
E [ X ] = ∑ k = 0 ∞ k e − λ λ k k ! = 0 + ∑ k = 1 ∞ k e − λ λ k k ! = λ ∑ k = 1 ∞ e − λ λ k − 1 ( k − 1 ) ! = λ ∑ k = 0 ∞ e − λ λ m m ! (利用归一化性质set  m = k − 1 ) = λ \begin{array}{rcl} \text{E}[X]&=&\displaystyle\sum_{k=0}^\infin ke^{-\lambda}\frac{\lambda^k}{k!}\\ &=&0+\displaystyle\sum_{k=1}^\infin ke^{-\lambda}\frac{\lambda^k}{k!}\\ &=&\lambda\displaystyle\sum_{k=1}^\infin e^{-\lambda}\frac{\lambda^{k-1}}{(k-1)!}\\ &=&\lambda\displaystyle\sum_{k=0}^\infin e^{-\lambda}\frac{\lambda^m}{m!} {\text{(利用归一化性质}\text{set }m=k-1)}\\ &=&\lambda \end{array} E[X]=====k=0keλk!λk0+k=1keλk!λkλk=1eλ(k1)!λk1λk=0eλm!λm(利用归一化性质set m=k1)λ

多个随机变量的联合分布列

e.g.一个双随机变量 X , Y X, Y X,Y的事件, 有他们的联合分布列
p X , Y ( x , y ) = P ( X = x , Y = y ) p_{X,Y}(x,y)=P(X=x,Y=y) pX,Y(x,y)=P(X=x,Y=y)
也可以表达为 P ( { X = x } ∩ { Y = y } ) P(\{X=x\}\cap\{Y=y\}) P({X=x}{Y=y}). 设 A A A是一组 ( x , y ) (x,y) (x,y)的集合,则:
P ( ( X , Y ) ∈ A ) = ∑ ( X , Y ) ∈ A p X , Y ( x , y ) P((X,Y)\in A)=\sum_{(X,Y)\in A}p_{X,Y}(x,y) P((X,Y)A)=(X,Y)ApX,Y(x,y)
两个边缘分布列 p X ( x ) , p Y ( y ) p_X(x), p_Y(y) pX(x),pY(y)可由联合分布列计算得到:
p X ( x ) = ∑ y p X , Y ( x , y ) , p Y ( y ) = ∑ x p X , Y ( x , y ) p_X(x)=\sum_yp_{ X,Y}(x,y), p_Y(y)=\sum_xp_{X,Y}(x,y) pX(x)=ypX,Y(x,y),pY(y)=xpX,Y(x,y)

多个随机变量的函数

确定一个新的随机变量 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y), 通过联合分布列可以计算它的分布列
p Z ( z ) = ∑ { ( x , y ) ∣ g ( x , y ) = z } p X , Y ( x , y ) p_Z(z)=\sum_{\{(x,y)|g(x,y)=z\}}p_{X,Y}(x,y) pZ(z)={(x,y)g(x,y)=z}pX,Y(x,y)
推广:
E [ g ( X , Y ) ] = ∑ x ∑ y g ( x , y ) p X , Y ( x , y ) \text{E}[g(X,Y)]=\sum_x\sum_yg(x,y)p_{X,Y}(x,y) E[g(X,Y)]=xyg(x,y)pX,Y(x,y)

当给定常数 a , b , c a,b,c a,b,c, g ( x , y ) = a X + b Y + c g(x,y)=aX+bY+c g(x,y)=aX+bY+c时:
E [ a X + b Y + c ] = a E [ X ] + b E [ Y ] + c \text{E}[aX+bY+c]=a\text{E}[X]+b\text{E}[Y]+c E[aX+bY+c]=aE[X]+bE[Y]+c

多随机变量的情况

由两个随机变量及其联合分布列,推出三随机变量及其联合分布列:
p X , Y , Z ( x , y , z ) = P ( X = x , Y = y , Z = z ) p_{X,Y,Z}(x,y,z)=P(X=x,Y=y,Z=z) pX,Y,Z(x,y,z)=P(X=x,Y=y,Z=z)
相应的有边缘分布列:
p X ( x ) = ∑ y ∑ z p X , Y , Z ( x , y , z ) p Y ( y ) = ∑ z ∑ x p X , Y , Z ( x , y , z ) p Z ( z ) = ∑ x ∑ y p X , Y , Z ( x , y , z ) p_X(x)=\sum_y\sum_zp_{X,Y,Z}(x,y,z)\\p_Y(y)=\sum_z\sum_xp_{X,Y,Z}(x,y,z)\\p_Z(z)=\sum_x\sum_yp_{X,Y,Z}(x,y,z) pX(x)=yzpX,Y,Z(x,y,z)pY(y)=zxpX,Y,Z(x,y,z)pZ(z)=xypX,Y,Z(x,y,z)
三变量期望:
E [ g ( X , Y , Z ) ] = ∑ x ∑ y ∑ z g ( x , y , z ) p X , Y , Z ( x , y , z ) \text{E}[g(X,Y,Z)]=\sum_x\sum_y\sum_zg(x,y,z)p_{X,Y,Z}(x,y,z) E[g(X,Y,Z)]=xyzg(x,y,z)pX,Y,Z(x,y,z)
当给定常数 a , b , c , d a,b,c,d a,b,c,d的线性函数, g ( x , y , z ) = a X + b Y + c Z + d g(x,y,z)=aX+bY+cZ+d g(x,y,z)=aX+bY+cZ+d时:
E [ a X + b Y + c Z + d ] = a E [ X ] + b E [ Y ] + c E [ Z ] + d \text{E}[aX+bY+cZ+d]=a\text{E}[X]+b\text{E}[Y]+c\text{E}[Z]+d E[aX+bY+cZ+d]=aE[X]+bE[Y]+cE[Z]+d

因此, a 1 , a 2 , a 3 , … , a n a_1,a_2,a_3,\dots,a_n a1,a2,a3,,an是常数,多随机变量 X 1 , X 2 , X 3 , … , X n X_1,X_2,X_3,\dots,X_n X1,X2,X3,,Xn应有:
E [ a 1 X 1 + a 2 X 2 + a 3 X 3 + ⋯ + a n X n ] = a 1 E [ X 1 ] + a 2 E [ X 2 ] + a 3 E [ X 3 ] + ⋯ + a n E [ X n ] = ∑ i = 1 n a i E [ X i ] \begin{array}{rl} &\text{E}[a_1X_1+a_2X_2+a_3X_3+\dots+a_nX_n]\\ =&a_1\text{E}[X_1]+a_2\text{E}[X_2]+a_3\text{E}[X_3]+\dots+a_n\text{E}[X_n]\\ =&\displaystyle\sum_{i=1}^na_i\text{E}[X_i] \end{array} ==E[a1X1+a2X2+a3X3++anXn]a1E[X1]+a2E[X2]+a3E[X3]++anE[Xn]i=1naiE[Xi]

e.g.帽子问题:假设一共有 n n n人,将他们的帽子放在一个盒子里,每个人随机从中拿起一个帽子(每人只拿一个帽子,且人与帽子的各种对应都是等可能的).拿回自己帽子的人数的平均数是多少?
对于每个人 i i i, 如能拿到自己的帽子,定义 X i = 1 X_i=1 Xi=1, 反之 X i = 0 X_i=0 Xi=0.
由于 P ( X i = 1 ) = 1 n P(X_i=1)=\frac{1}{n} P(Xi=1)=n1 P ( X i = 0 ) = 1 − 1 n P(X_i=0)=1-\frac{1}{n} P(Xi=0)=1n1, X i X_i Xi的平均值为:
E [ X i ] = 1 ⋅ 1 n + 0 ⋅ ( 1 − 1 n ) = 1 n 由:  X = X 1 + X 2 + ⋯ + X n E [ X ] = E [ X 1 ] + E [ X 2 ] + E [ X 3 ] + ⋯ + E [ X n ] = n ⋅ 1 n = 1 \text{E}[X_i]=1\cdot\frac{1}{n}+0\cdot(1-\frac{1}{n})=\frac{1}{n}\\\text{由: }X=X_1+X_2+\cdots+X_n\\\text{E}[X]=\text{E}[X_1]+\text{E}[X_2]+\text{E}[X_3]+\cdots+\text{E}[X_n]=n\cdot\frac{1}{n}=1 E[Xi]=1n1+0(1n1)=n1X=X1+X2++XnE[X]=E[X1]+E[X2]+E[X3]++E[Xn]=nn1=1

条件

某个事件发生的条件下的随机变量

对于事件 A A A发生的条件下, 随机变量 X X X条件分布列:
p X ∣ A ( x ) = P ( X = x ∣ A ) = P ( X = x ∩ A ) P ( A ) p_{X|A}(x)=P(X=x|A)=\frac{P({X=x}\cap A)}{P(A)} pXA(x)=P(X=xA)=P(A)P(X=xA)
对于不同的 x x x, X = x ∩ A {X=x}\cap A X=xA是互不相容的事件,并为 A A A
P ( A ) = ∑ x P ( X = x ∩ A ) P(A)=\sum_xP({X=x}\cap A) P(A)=xP(X=xA)
综上:
∑ x p X ∣ A ( x ) = 1 \sum_xp_{X|A}(x)=1 xpXA(x)=1

给定另一个随机变量的值的条件下的随机变量

X , Y X, Y X,Y为某一试验中的两个随机变量

  • Y = y Y=y Y=y的条件下 X X X条件分布列与联合分布列:
    p X ∣ Y ( x ∣ y ) = P ( X = x ∣ Y y ) = P ( X = x , Y = y ) P ( Y = y ) = p X , Y ( x , y ) p Y ( y ) p_{X|Y}(x|y)=P(X=x|Y_y)=\frac{P(X=x,Y=y)}{P(Y=y)}=\frac{p_{X,Y}(x,y)}{p_Y(y)} pXY(xy)=P(X=xYy)=P(Y=y)P(X=x,Y=y)=pY(y)pX,Y(x,y)
    p X , Y ( x , y ) = p Y ( y ) p X ∣ Y ( x ∣ y ) p_{X,Y}(x,y)=p_Y(y)p_{X|Y}(x|y) pX,Y(x,y)=pY(y)pXY(xy)
  • 也可用于计算 X X X的边缘分布列:
    p X ( x ) = ∑ y p Y ( y ) p X ∣ Y ( x ∣ y ) p_X(x)=\sum_yp_Y(y)p_{X|Y}(x|y) pX(x)=ypY(y)pXY(xy)

条件期望

X , Y X, Y X,Y为某一试验中的两个随机变量

  • 对于事件 A A A P ( A ) > 0 P(A)>0 P(A)>0. 随机变量 X X X在给定的 A A A的条件下:
    E [ X ∣ A ] = ∑ x x p X ∣ A ( x ) \text{E}[X|A]=\sum_xxp_{X|A}(x) E[XA]=xxpXA(x)
    对于函数 g ( X ) g(X) g(X): E [ g ( X ) ∣ A ] = ∑ x g ( x ) p X ∣ A ( x ) \text{E}[g(X)|A]=\sum_xg(x)p_{X|A}(x) E[g(X)A]=xg(x)pXA(x)
  • 在给定 Y = y Y=y Y=y条件下 X X X的调价期望:
    E [ X ∣ Y = y ] = ∑ x x p X ∣ Y ( x ∣ y ) \text{E}[X|Y=y]=\sum_xxp_{X|Y}(x|y) E[XY=y]=xxpXY(xy)
  • 给定 A i ( i ∈ [ 1 , n ] ) A_i(i\in[1,n]) Ai(i[1,n])是互不相容事件并且形成样本空间的一个分割,假定 P ( A i ) > 0 P(A_i)>0 P(Ai)>0:
    E [ X ] = ∑ i = 1 n P ( A i ) E [ X ∣ A i ] \text{E}[X]=\sum_{i=1}^nP(A_i)\text{E}[X|A_i] E[X]=i=1nP(Ai)E[XAi]
    假定事件 B B B满足 P ( A i ∩ B ) > 0 P(A_i\cap B)>0 P(AiB)>0:
    E [ X ∣ B ] = ∑ i = 1 n P ( A i ∣ B ) E [ X ∣ A i ∩ B ] \text{E}[X|B]=\sum_{i=1}^nP(A_i|B)\text{E}[X|A_i\cap B] E[XB]=i=1nP(AiB)E[XAiB]
    综上: E [ X ] = ∑ y p Y ( y ) E [ X ∣ Y = y ] \text{E}[X]=\sum_yp_Y(y)\text{E}[X|Y=y] E[X]=ypY(y)E[XY=y]
    全期望定理:无条件平均可以通过条件平均再求平均得到

独立性

A , B A,B A,B独立意味着 A A A的取值不会为 X X X的取值提供信息。

随机变量与事件的相互独立性

随机变量 X X X独立于事件 A A A 是指:
对所有 x x x的取值
P ( X = x ∪ A ) = P ( X = x ) P ( A ) = p X ( x ) P ( A ) P(X=x\cup A)=P(X=x)P(A)=p_X(x)P(A) P(X=xA)=P(X=x)P(A)=pX(x)P(A)
也就是
p X ∣ A ( x ) = p X ( x )   ( when  P ( A ) > 0 ) p_{X|A}(x)=p_X(x)\,(\text{when }P(A)>0) pXA(x)=pX(x)(when P(A)>0)

随机变量之间的相互独立性

随机变量 X X X独立于随机变量 Y Y Y 是指:
对所有 x x x y y y的取值
p X , Y ( x , y ) = p X ( x ) p Y ( y ) p_{X,Y}(x,y)=p_X(x)p_Y(y) pX,Y(x,y)=pX(x)pY(y)
由此可知, 对所有 x x x
p X ∣ Y ( x ∣ y ) = p X ( x )   ( when  p Y ( y ) > 0 ) p_{X|Y}(x|y)=p_X(x)\,(\text{when }p_Y(y)>0) pXY(xy)=pX(x)(when pY(y)>0)

X X X Y Y Y相互独立: E [ X Y ] = E [ X ] E [ Y ] \text{E}[XY]=\text{E}[X]\text{E}[Y] E[XY]=E[X]E[Y]
对于任意函数 g g g, h h h: E [ g ( X ) h ( Y ) ] = E [ g ( X ) ] E [ h ( Y ) ] \text{E}[g(X)h(Y)]=\text{E}[g(X)]\text{E}[h(Y)] E[g(X)h(Y)]=E[g(X)]E[h(Y)]
X X X Y Y Y相互独立: var ( X + Y ) = var ( X ) + var ( Y ) \text{var}(X+Y)=\text{var}(X)+\text{var}(Y) var(X+Y)=var(X)+var(Y)

几个随机变量的相互独立性

有上述内容易得出:
随机变量 X , Y , Z X,Y,Z X,Y,Z相互独立,则
p X , Y , Z ( x , y , z ) = p X ( x ) p Y ( y ) p Z ( z ) p_{X,Y,Z}(x,y,z)=p_X(x)p_Y(y)p_Z(z) pX,Y,Z(x,y,z)=pX(x)pY(y)pZ(z) 对任意 x , y , z x,y,z x,y,z成立.
随机变量的函数也可相应

若干个相互独立的随机变量的和的方差

反复验证 var ( X + Y ) = var ( X ) + var ( Y ) \text{var}(X+Y)=\text{var}(X)+\text{var}(Y) var(X+Y)=var(X)+var(Y):
var ( X 1 + X 2 + ⋯ X n ) = var ( X 1 ) + var ( X 2 ) + ⋯ var ( X n ) \text{var}(X_1+X_2+\cdots X_n)=\text{var}(X_1)+\text{var}(X_2)+\cdots\text{var}(X_n) var(X1+X2+Xn)=var(X1)+var(X2)+var(Xn)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值