人工智能
laviewpbt
这个作者很懒,什么都没留下…
展开
-
基于模糊等价关系的模糊聚类分析
假设R是X上的模糊等价关系,则对任意的a,R的a-截集是X上的普通等价关系,因此,可以根据X上的模糊关系,对X进行模糊分类。当取不同的a值,则可以得到不同的分类结果,即分类是动态的。 实际操作中,一般情况下,我们所获得是一系列样本,假设有N个,每个样本可以看作是M维空间中的一个点。可以表示如下,论域: ,对第i个元素有 1.数据预处理原创 2006-11-01 21:54:00 · 4252 阅读 · 1 评论 -
模糊聚类算法(FCM)和硬聚类算法(HCM)的VB6.0实现及其应用
程序实现: 上面的公式看似复杂,其实我们关心的就是最后的5个计算步骤,这里说明一下,有的书上以隶属度矩阵的某一范数小于一定值作为收敛的条件,这也可,不过计算量稍微要大一点了。 程序采用VB6.0编制,完全按照以上的步骤进行。 程序实现功能:模糊聚类和硬聚类作 者: laviewpbt联系方式: laviewpbt@sina.com原创 2006-11-01 23:09:00 · 15513 阅读 · 23 评论 -
标准的遗传算法求函数最大值。
最近看了下遗传算法,刚看了一点,就觉得手痒,非要把程序编制出来看看效果(我现在总认为那些理论再高深,无法用计算机实现就是空话,呵呵)。下面是我调试了好久的代码,无赖没有学过数据结构&算法,程序写的很差,单效果还是出来了,高兴,和大家共同分享下成果吧。 还是一样,不想说原理,因为这里想搞个公式上去N麻烦。直接给点实际的东西。具体步骤是参考《MATLAB遗传算法工具箱及应原创 2006-11-03 22:57:00 · 20123 阅读 · 11 评论 -
神经网络学习笔记1:感知机和线性神经网络的实现
感知机和线性神经网络是最简单和最基本的神经网络类型,但他们也有着广泛的应用。在学神经网络时理论部分还是比较粗糙的,通过自己编程实践他不仅能锻炼提高编程水平,而且更有利于提升对理论的理解和运用。 感知机和线性神经网络的学习规则相当的简单,对于感知机有: 对于线性网络有: 可以看出,两者有很多的相似,因此,编程中可以把两者的公共原创 2006-11-12 22:47:00 · 5224 阅读 · 0 评论 -
神经网络学习笔记2:有监督的Hebb学习
仿逆规则使误差平方和最小化,而LMS算法(见神经网络学习笔记1)则调整权值使均方误差最小,因而两者的结果是相同的,但是LMS算法每输入一个模式就更新一次权值,因此他可以用来实时的学习,而仿逆规则要等所有的输入和输出模式已知后才计算一次权值。 现在我们将Hebb规则用于一个简化的实际模式识别的问题中,我们设定期望输出等于网络的输入我们的目标(T=P),原创 2006-11-13 23:09:00 · 5036 阅读 · 0 评论 -
神经网络学习笔记3:BP神经网络的实现及其应用
反向传播算法也称BP算法。由于这种算法在本质上是一种神经网络学习的数学模型,所以,有时也称为BP模型。BP算法是为了解决多层前向神经网络的权系数优化而提出来的;所以,BP算法也通常暗示着神经网络的拓扑结构是一种无反馈的多层前向网络,它含有输人层、输出层以及处于输入输出层之间的中间层。中间层有单层或多层,由于它们和外界没有直接的联系,故也称为隐层。在隐层中的神经元也称隐单元。隐层虽然和外界不原创 2006-11-16 18:08:00 · 9733 阅读 · 4 评论 -
神经网络学习笔记4:CPN网络的实现
对向传播网络(Counter Propagation),简称CPN,是将Kohonen特征映射网络与Grossberg基本竞争型网络相结合,发挥各自长处的一种新型特征映射网络,被广泛的运用于模式分类,函数近似,数据压缩等方面。 CPN网络分为输入层,竞争层,隐含层。输入层与竞争层构成SOM网络,竞争层与输出层构成基本竞争 型网络,从整体上看,CPN网络属于有教师学习型原创 2006-11-19 16:18:00 · 3475 阅读 · 0 评论 -
硬聚类(HCM)和模糊聚类(FCM)在彩色图像分割中的具体应用
示例工程见: http://files.cnblogs.com/laviewpbt/%e5%9b%be%e5%83%8f%e6%a8%a1%e7%b3%8a%e8%81%9a%e7%b1%bb.rar 一年前我写过模糊聚类算法(FCM)和硬聚类算法(HCM)的VB6.0实现及其应用 一文,之后,有不少同仁向我询问如何将这个算法应用在彩色原创 2007-07-31 21:35:00 · 6462 阅读 · 4 评论