题目描述
输入描述
输出描述
输入样例
5
4 3 2 5 1
输出样例
5
如题名所示,确实考的是逆序对。题目大意为给定一个内部元素不重复的数组a,可对其中的任一数进行 +1 的操作(或者不操作),每个数仅能操作一次,求操作后的数组c最少有多少逆序对。
由于数组a内元素不重复且每个数只能选择 +1 或不变,因此对于除 1 和 n 外的任一数,使逆序对减少的方案都有两种(设该数为i):
①自身 +1 以去除逆序对( i + 1 , i )
ps:该方式仅当 i + 1 在 i 前有效;
②自身不变,令 ( i - 1 )+ 1 以去除逆序对( i , i - 1 )
ps:该方式仅当 i 在 i - 1 前有效;
由此可进一步推出,当 i + 1 出现在 i 之前时,可令 i++ 使逆序对数量 -1 ;否则标记 i 已出现,供可能在之后出现的 i - 1 判断是否之前已出现 i 。
参考代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+10;
int a[N];
ll nxt;
void msort(int l,int r){
if(l>=r)return;
int mid=l+r>>1;
msort(l,mid);
msort(mid+1,r);
int i=l,j=mid+1,k=0;
int t[r-l+1];
while(i<=mid&&j<=r){
if(a[i]<=a[j])t[k++]=a[i++];
else{
t[k++]=a[j++];
nxt+=mid-i+1;
}
}
while(i<=mid)t[k++]=a[i++];
while(j<=r)t[k++]=a[j++];
for(i=l,k=0;i<=r;i++,k++)a[i]=t[k];
}
int main(){
ll ans;
unordered_map<int, int> primes;
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
primes[0]=1;
primes[a[0]]=1;
for(int i=1;i<n;i++){
if(primes[a[i]+1]==1){
a[i]++;
}
else
primes[a[i]]=1;
}
msort(0,n-1);
cout<<nxt;
return 0;
}