Codeforces Round #760 (Div. 3 A/B/C/D)

A. Polycarp and Sums of Subsequences

传送门

题目描述

在这里插入图片描述

输入描述

在这里插入图片描述

输出描述

在这里插入图片描述

输入样例

5
1 3 4 4 5 7 8
1 2 3 4 5 6 7
300000000 300000000 300000000 600000000 600000000 600000000 900000000
1 1 2 999999998 999999999 999999999 1000000000
1 2 2 3 3 4 5

输出样例

1 4 3
4 1 2
300000000 300000000 300000000
999999998 1 1
1 2 2

提示

在这里插入图片描述


易得结果为前两项及最后一项减去前两项的差。

参考代码

#include <bits/stdc++.h>
using namespace std;

int main(){
	int t;
	int a[10];
	cin>>t;
	while(t--){
		for(int i=1;i<=7;i++){
			cin>>a[i];
		}
		cout<<a[1]<<" "<<a[2]<<" "<<a[7]-a[1]-a[2]<<endl;
	}
	
	
	return 0;
} 

B. Missing Bigram

传送门

题目描述

在这里插入图片描述

输入描述

在这里插入图片描述

输出描述

在这里插入图片描述

输入样例

4
7
ab bb ba aa ba
7
ab ba aa ab ba
3
aa
5
bb ab bb

输出样例

abbaaba
abaabaa
baa
bbabb

样例解释

在这里插入图片描述


如果某字符串的第一位与前一个字符串的第二位不相等,说明被切掉的是中间一段,此时序列固定,需要加上后字符串的第一位以补全。

否则除第一个字符串全部提取外,其余每个字符串都取第二位加入,最后在结尾补上一个 ‘ a ’ 即可。

参考代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

int main(){
	int t;
	cin>>t;
	string s;
	while(t--){
		string ans="";
		int n;
		int flag=0;
		cin>>n;
		char tag;
		for(int i=1;i<=n-2;i++){
			cin>>s;
			if(i==1){
				ans+=s[0];
				ans+=s[1];
				tag=s[1];
			}
			else{
				if(s[0]!=tag){
					ans+=s[0];
					ans+=s[1];
					flag=1;
				}
				else{
					ans+=s[1];
				}
				tag=s[1];
			}
		}
		if(flag==0)
			ans+='a';
		cout<<ans<<endl;
	}
	return 0;
}

C. Paint the Array

传送门

题目描述

在这里插入图片描述

输入描述

在这里插入图片描述

输出描述

在这里插入图片描述

输入样例

5
5
1 2 3 4 5
3
10 5 15
3
100 10 200
10
9 8 2 6 6 2 8 6 5 4
2
1 3

输出样例

2
0
100
0
3

对所有下标为奇数的取最大公因数,并判断下标为偶数的是否能整除该最大公因数,若能则该最大公因数不合法。

同理,对所有下标为偶数的取最大公因数,并判断下标为奇数的是否能整除该最大公因数,若能则该最大公因数不合法。

若两个都不合法则无解,否则输出某个合法的最大公因数即可。

参考代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

int main(){
	int t;
	cin>>t;
	while(t--){
		ll a[110];
		int n;
		cin>>n;
		for(int i=1;i<=n;i++)
			cin>>a[i];
		ll g1=0;
		int flag1=0,flag2=0;;
		for(int i=1;i<=n;i+=2){
			g1=(ll)__gcd(g1,a[i]);
		}
		
		for(int i=2;i<=n;i+=2){
			if(a[i]%g1==0){
				flag1=1;
				break;
			}
		}
		ll g2=0;
		for(int i=2;i<=n;i+=2){
			g2=(ll)__gcd(g2,a[i]);
		}
		for(int i=1;i<=n;i+=2){
			if(a[i]%g2==0){
				flag2=1;
				break;
			}
		}
		
		if(flag1==1&&flag2==1)
			cout<<"0"<<endl;
		else if(flag1==1)
			cout<<g2<<endl;
		else
			cout<<g1<<endl;
	}
	return 0;
}

D. Array and Operations

传送门

题目描述

在这里插入图片描述

输入描述

在这里插入图片描述

输出描述

在这里插入图片描述

输入样例

5
7 3
1 1 1 2 1 3 1
5 1
5 5 5 5 5
4 2
1 3 3 7
2 0
4 2
9 2
1 10 10 1 10 2 7 10 3

输出样例

2
16
0
6
16

样例解释

在这里插入图片描述


容易发现, 1 n \frac{1}{n} n1 n − 1 n \frac{n-1}{n} nn1 对答案产生的贡献都是一样的,而最后对剩余进行结算时,显然 n − 1 n-1 n1 1 1 1 的贡献大,因此前 n − 2 ∗ k n - 2*k n2k 个加入最后的剩余运算,之后的加入分式运算。

对于测试数据 3 3 3 ,易发现最优方法为 1 1 1 3 3 3(下标为 3 3 3 ) 组合, 3 3 3(下标为 2 2 2 ) 和 7 7 7 组合。(其实推广找规律后会发现 i i i i + k i+k i+k 就是最优方法),因此若 i i i i + k i+k i+k 相等则贡献 + 1 +1 +1 即可。

参考代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

const int inf=0x3f3f3f3f;
int a[110];

int main(){
	int t;
	cin>>t;
	while(t--){
		int n,k;
		cin>>n>>k;
		for(int i=1;i<=n;i++)
			cin>>a[i];
		
		sort(a+1,a+n+1);
		
		ll ans=0;
		
		for(int i=1;i<=n-2*k;i++)
			ans+=a[i];
		
		for(int i=n-2*k+1;i<=n-k;i++){
			if(a[i]==a[i+k])
				ans++;
		}
		
		cout<<ans<<endl;
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值