A. Polycarp and Sums of Subsequences
题目描述
输入描述
输出描述
输入样例
5
1 3 4 4 5 7 8
1 2 3 4 5 6 7
300000000 300000000 300000000 600000000 600000000 600000000 900000000
1 1 2 999999998 999999999 999999999 1000000000
1 2 2 3 3 4 5
输出样例
1 4 3
4 1 2
300000000 300000000 300000000
999999998 1 1
1 2 2
提示
易得结果为前两项及最后一项减去前两项的差。
参考代码
#include <bits/stdc++.h>
using namespace std;
int main(){
int t;
int a[10];
cin>>t;
while(t--){
for(int i=1;i<=7;i++){
cin>>a[i];
}
cout<<a[1]<<" "<<a[2]<<" "<<a[7]-a[1]-a[2]<<endl;
}
return 0;
}
B. Missing Bigram
题目描述
输入描述
输出描述
输入样例
4
7
ab bb ba aa ba
7
ab ba aa ab ba
3
aa
5
bb ab bb
输出样例
abbaaba
abaabaa
baa
bbabb
样例解释
如果某字符串的第一位与前一个字符串的第二位不相等,说明被切掉的是中间一段,此时序列固定,需要加上后字符串的第一位以补全。
否则除第一个字符串全部提取外,其余每个字符串都取第二位加入,最后在结尾补上一个 ‘ a ’ 即可。
参考代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main(){
int t;
cin>>t;
string s;
while(t--){
string ans="";
int n;
int flag=0;
cin>>n;
char tag;
for(int i=1;i<=n-2;i++){
cin>>s;
if(i==1){
ans+=s[0];
ans+=s[1];
tag=s[1];
}
else{
if(s[0]!=tag){
ans+=s[0];
ans+=s[1];
flag=1;
}
else{
ans+=s[1];
}
tag=s[1];
}
}
if(flag==0)
ans+='a';
cout<<ans<<endl;
}
return 0;
}
C. Paint the Array
题目描述
输入描述
输出描述
输入样例
5
5
1 2 3 4 5
3
10 5 15
3
100 10 200
10
9 8 2 6 6 2 8 6 5 4
2
1 3
输出样例
2
0
100
0
3
对所有下标为奇数的取最大公因数,并判断下标为偶数的是否能整除该最大公因数,若能则该最大公因数不合法。
同理,对所有下标为偶数的取最大公因数,并判断下标为奇数的是否能整除该最大公因数,若能则该最大公因数不合法。
若两个都不合法则无解,否则输出某个合法的最大公因数即可。
参考代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main(){
int t;
cin>>t;
while(t--){
ll a[110];
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
ll g1=0;
int flag1=0,flag2=0;;
for(int i=1;i<=n;i+=2){
g1=(ll)__gcd(g1,a[i]);
}
for(int i=2;i<=n;i+=2){
if(a[i]%g1==0){
flag1=1;
break;
}
}
ll g2=0;
for(int i=2;i<=n;i+=2){
g2=(ll)__gcd(g2,a[i]);
}
for(int i=1;i<=n;i+=2){
if(a[i]%g2==0){
flag2=1;
break;
}
}
if(flag1==1&&flag2==1)
cout<<"0"<<endl;
else if(flag1==1)
cout<<g2<<endl;
else
cout<<g1<<endl;
}
return 0;
}
D. Array and Operations
题目描述
输入描述
输出描述
输入样例
5
7 3
1 1 1 2 1 3 1
5 1
5 5 5 5 5
4 2
1 3 3 7
2 0
4 2
9 2
1 10 10 1 10 2 7 10 3
输出样例
2
16
0
6
16
样例解释
容易发现, 1 n \frac{1}{n} n1 与 n − 1 n \frac{n-1}{n} nn−1 对答案产生的贡献都是一样的,而最后对剩余进行结算时,显然 n − 1 n-1 n−1 比 1 1 1 的贡献大,因此前 n − 2 ∗ k n - 2*k n−2∗k 个加入最后的剩余运算,之后的加入分式运算。
对于测试数据 3 3 3 ,易发现最优方法为 1 1 1 和 3 3 3(下标为 3 3 3 ) 组合, 3 3 3(下标为 2 2 2 ) 和 7 7 7 组合。(其实推广找规律后会发现 i i i 与 i + k i+k i+k 就是最优方法),因此若 i i i 与 i + k i+k i+k 相等则贡献 + 1 +1 +1 即可。
参考代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
int a[110];
int main(){
int t;
cin>>t;
while(t--){
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
sort(a+1,a+n+1);
ll ans=0;
for(int i=1;i<=n-2*k;i++)
ans+=a[i];
for(int i=n-2*k+1;i<=n-k;i++){
if(a[i]==a[i+k])
ans++;
}
cout<<ans<<endl;
}
return 0;
}