tsp问题,又称旅行商问题,原题意为一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。
郊区春游
tsp 问题采用的基本描述状态为: f [ i ] [ j ] f[i][j] f[i][j] ,其中 i i i 将每个点均表现为二进制状态, 1 1 1 表示已经过, 0 0 0 表示未经过, j j j 表示完成该状态当前的点(即最后一步到达的点),由此下一步走到 k k k 点的状态转移方程为 f [ i + i ∗ ] [ k ] = f [ i ] [ j ] + d i s [ j ] [ k ] f[i+i^*][k]=f[i][j]+dis[j][k] f[i+i∗][k]=f[i][j]+dis[j][k]
其中, i ∗ i^* i∗ 为 k k k 点对应的二进制状态,例 k = 4 k=4 k=4 时, i ∗ = 1000 i^*=1000 i∗=1000,则转移条件为 i i i & & \&\& && i ∗ = = 0 i^*==0 i∗==0,不为 0 0 0 则说明当前的 i i i 状态已经走过了 k k k 点
因此对于每个状态,枚举其最后到达的点及下一个将要到达的点进行状态转移即可。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=250;
const int inf=0x3f3f3f;
int g[N][N];//邻接矩阵
int f[1<<16][20];//i为走过哪些景点的状态 j为当前在哪个景点
int n,m;
int a[20];
void init(){
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)
g[i][j]=10050;
}
void solve(){
int R;
cin>>n>>m>>R;
for(int i=1;i<=R;i++)
cin>>a[i];
init();
int u,v,c;
for(int i=1;i<=m;i++){
cin>>u>>v>>c;
g[u][v]=g[v][u]=c;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
g[i][j]=min(g[i][j],g[i][k]+g[k][j]);//floyed算法
memset(f,0x3f,sizeof(f));
int len=(1<<R)-1;//状态上限
for(int i=1;i<=R;i++)
f[1<<(i-1)][i]=0;//初始化 从该点出发的代价为0
for(int i=1;i<=len;i++){//枚举所有状态
for(int pre=1;pre<=R;pre++){//pre:从哪个点走来
int st1=1<<(pre-1);
if((st1&i)==0)//在当前枚举的状态中 该点并未走过
continue;
for(int k=1;k<=R;k++){//枚举将要去的点
int st2=1<<(k-1);
if(st2&i)//在当前枚举的状态中 该点已被走过
continue;
f[i+st2][k]=min(f[i+st2][k],f[i][pre]+g[a[pre]][a[k]]);
}
}
}
int res=inf;
for(int i=1;i<=R;i++){
res=min(res,f[len][i]);
}
cout<<res<<endl;
}
signed main(){
solve();
return 0;
}
tsp问题2-简单环
本题同样沿用郊区春游中的状态转移方程,但所求转化为对应长度的简单环的数量。由于简单环中的长度等于该环的顶点数,因此可以采用 _ _ b u i l t i n _ p o p c o u n t ( ) \_\_builtin\_popcount() __builtin_popcount() 计算二进制中1的个数以确定长度。
#include <bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int mod=998244353;
const int N=30;
vector<int> h[N];
int count[N];
bool g[N][N];
int ans[N];
int f[1<<20][30];
long long qsm(int a,int k){
int res=1;
while(k){
if(k&1) res=res*a%mod;
a=a*a%mod;
k/=2;
}
return res;
}
/*
经过了几个点就是长度为几的简单环 枚举起点和终点 及终点是否能够与起点连通
为保证不进行重复计算,需要处理终点一定比起点大
最终将对同一环顺时针+逆时针重复计算两次 利用逆元进行处理
__builtin_popcount() 计算二进制中1的个数
*/
signed main(){
int n,m,k;
int u,v;
cin>>n>>m>>k;
for(int i=1;i<=n;i++)
f[1<<(i-1)][i]=1;//初始化起点
int len=(1<<n)-1;//状态上限
for(int i=1;i<=m;i++){
cin>>u>>v;
g[u][v]=g[v][u]=true;
}
int s;//s记录 保证终点一定比起点大
for(int i=1;i<=len;i++){
for(int j=1;j<=n;j++)
if((i>>(j-1))&1){
s=j;
break;
}
for(int j=1;j<=n;j++){//枚举起点
int st1=1<<(j-1);
if(!(i&st1))
continue;
for(int k=s+1;k<=n;k++){//枚举终点
int st2=1<<(k-1);
if(i&st2)
continue;
if(g[j][k])
f[i+st2][k]=(f[i+st2][k]+f[i][j])%mod;
}
if(g[j][s]){
int length=__builtin_popcount(i);//该函数可求二进制中1的个数
if(length>=3)
ans[length%k]=(ans[length%k]+f[i][j])%mod;
}
}
}
for(int i=0;i<k;i++)
cout<<(ans[i]*(mod+1)/2)%mod<<endl;//发现快速幂求逆元会t emo住了
return 0;
}