TSP问题-郊区春游+简单环

tsp问题,又称旅行商问题,原题意为一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。

郊区春游

传送门

tsp 问题采用的基本描述状态为: f [ i ] [ j ] f[i][j] f[i][j] ,其中 i i i 将每个点均表现为二进制状态, 1 1 1 表示已经过, 0 0 0 表示未经过, j j j 表示完成该状态当前的点(即最后一步到达的点),由此下一步走到 k k k 点的状态转移方程为 f [ i + i ∗ ] [ k ] = f [ i ] [ j ] + d i s [ j ] [ k ] f[i+i^*][k]=f[i][j]+dis[j][k] f[i+i][k]=f[i][j]+dis[j][k]

其中, i ∗ i^* i k k k 点对应的二进制状态,例 k = 4 k=4 k=4 时, i ∗ = 1000 i^*=1000 i=1000,则转移条件为 i i i & & \&\& && i ∗ = = 0 i^*==0 i==0,不为 0 0 0 则说明当前的 i i i 状态已经走过了 k k k

因此对于每个状态,枚举其最后到达的点及下一个将要到达的点进行状态转移即可。

#include <bits/stdc++.h>
#define int long long
using namespace std;

const int N=250;
const int inf=0x3f3f3f;
int g[N][N];//邻接矩阵
int f[1<<16][20];//i为走过哪些景点的状态 j为当前在哪个景点
int n,m;
int a[20];

void init(){
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i!=j)
                g[i][j]=10050;
}

void solve(){
    int R;
    cin>>n>>m>>R;
    for(int i=1;i<=R;i++)
        cin>>a[i];

    init();
    int u,v,c;
    for(int i=1;i<=m;i++){
        cin>>u>>v>>c;
        g[u][v]=g[v][u]=c;
    }
    
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                g[i][j]=min(g[i][j],g[i][k]+g[k][j]);//floyed算法
    
    memset(f,0x3f,sizeof(f));

    int len=(1<<R)-1;//状态上限
    for(int i=1;i<=R;i++)
        f[1<<(i-1)][i]=0;//初始化 从该点出发的代价为0
    
    for(int i=1;i<=len;i++){//枚举所有状态
        for(int pre=1;pre<=R;pre++){//pre:从哪个点走来
            int st1=1<<(pre-1);
            if((st1&i)==0)//在当前枚举的状态中 该点并未走过
                continue;
            for(int k=1;k<=R;k++){//枚举将要去的点
                int st2=1<<(k-1);
                if(st2&i)//在当前枚举的状态中 该点已被走过
                    continue;
                f[i+st2][k]=min(f[i+st2][k],f[i][pre]+g[a[pre]][a[k]]);
            }
        }
    }
    
    int res=inf;
    for(int i=1;i<=R;i++){
        res=min(res,f[len][i]);
    }
    cout<<res<<endl;
}

signed main(){
    solve();
    return 0;
}

tsp问题2-简单环

传送门

本题同样沿用郊区春游中的状态转移方程,但所求转化为对应长度的简单环的数量。由于简单环中的长度等于该环的顶点数,因此可以采用 _ _ b u i l t i n _ p o p c o u n t ( ) \_\_builtin\_popcount() __builtin_popcount() 计算二进制中1的个数以确定长度。

#include <bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int mod=998244353;
const int N=30;
vector<int> h[N];
int count[N];
bool g[N][N];
int ans[N];
int f[1<<20][30];

long long qsm(int a,int k){ 
    int res=1;
    while(k){
        if(k&1) res=res*a%mod;
        a=a*a%mod;
        k/=2;
    }
    return res;
}

/*
经过了几个点就是长度为几的简单环 枚举起点和终点 及终点是否能够与起点连通
为保证不进行重复计算,需要处理终点一定比起点大
最终将对同一环顺时针+逆时针重复计算两次 利用逆元进行处理
__builtin_popcount() 计算二进制中1的个数
*/

signed main(){
    int n,m,k;
    int u,v;
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
        f[1<<(i-1)][i]=1;//初始化起点
    int len=(1<<n)-1;//状态上限
    
    for(int i=1;i<=m;i++){
        cin>>u>>v;
        g[u][v]=g[v][u]=true;
    }
    
    int s;//s记录 保证终点一定比起点大
    for(int i=1;i<=len;i++){
        for(int j=1;j<=n;j++)
            if((i>>(j-1))&1){
                s=j;
                break;
            }
        for(int j=1;j<=n;j++){//枚举起点
            int st1=1<<(j-1);
            if(!(i&st1))
                continue;
            for(int k=s+1;k<=n;k++){//枚举终点
                int st2=1<<(k-1);
                if(i&st2)
                    continue;
                if(g[j][k])
                    f[i+st2][k]=(f[i+st2][k]+f[i][j])%mod;
            }
            if(g[j][s]){
                int length=__builtin_popcount(i);//该函数可求二进制中1的个数
                if(length>=3)
                    ans[length%k]=(ans[length%k]+f[i][j])%mod;
            }
        }
    }
    for(int i=0;i<k;i++)
        cout<<(ans[i]*(mod+1)/2)%mod<<endl;//发现快速幂求逆元会t emo住了
    

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值