P2472 [SCOI2007] 蜥蜴(dinic)

传送门

洛谷:紫

很久没写博客了,水几题dinic吧

读完题容易想到,对于每个可以一步跳到网格外的石柱,将其向汇点 t t t 连容量为 h [ i ] [ j ] h[i][j] h[i][j] 的边。对于初始有蜥蜴的石柱,由源点 s s s 向其连容量为 1 1 1 的边,而对于所有平面距离不超过 d d d 的石柱之间,连容量为正无穷的双向边。

但仅设置当前条件跑最大流会发现连样例都过不去,因为此时违背了每个石柱仅能经过所标数字个数的蜥蜴的条件。由此需要把每个石柱进行拆点操作,由入点向出点连一条容量为 h [ i ] [ j ] h[i][j] h[i][j] 的边(同时可发现在该条件限制下,所有石柱的出点向汇点 t t t 所连边的容量也可以设置成无穷大)。

参考代码

#include <bits/stdc++.h>
#define itn int
#define int long long
#define endl "\n"
#define PII pair<int, int>
using namespace std;
const int N = 1e6 + 10;
const itn inf = 0x3f3f3f;
const int mod = 998244353;
// const int mod = 1e9 + 7;

int n, m, s, t;

struct Edge {
    int from, to, cap, flow;
    Edge(int f, int t, int c, int fl) {
        from = f;
        to = t;
        cap = c;
        flow = fl;
    }
};

struct Dinic {
    int n, m, s, t;  //结点数,边数(包括反向弧),源点编号和汇点编号
    vector<Edge> edges;  //边表。edge[e]和edge[e^1]互为反向弧
    vector<int> G[N];  //邻接表,G[i][j]表示节点i和第j条边在e数组中的序号
    bool vis[N];  // BFS使用
    int d[N];     //从起点到i的距离
    int cur[N];   //当前弧下标

    void clear_all(int n) {
        for (int i = 0; i < n; i++)
            G[i].clear();
        edges.clear();
    }
    void clear_flow() {
        int len = edges.size();
        for (int i = 0; i < len; i++)
            edges[i].flow = 0;
    }
    void add_edge(int from, int to, int cap) {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
    bool BFS() {
        memset(vis, 0, sizeof(vis));
        queue<int> q;
        q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while (!q.empty()) {
            int x = q.front();
            q.pop();
            int len = G[x].size();
            for (int i = 0; i < len; i++) {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow) {
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a) {
        if (x == t || a == 0)
            return a;
        int flow = 0, f, len = G[x].size();
        for (int& i = cur[x]; i < len; i++) {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] &&
                (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0)
                    break;
            }
        }
        return flow;
    }
    int maxflow(int s, int t) {
        this->s = s;
        this->t = t;
        int flow = 0;
        while (BFS()) {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, inf);
        }
        return flow;
    }

    int mincut() {  // call this after maxflow
        int ans = 0;
        int len = edges.size();
        for (int i = 0; i < len; i++) {
            Edge& e = edges[i];
            if (vis[e.from] && !vis[e.to] && e.cap > 0)
                ans++;
        }
        return ans;
    }
    void reduce() {
        int len = edges.size();
        for (int i = 0; i < len; i++)
            edges[i].cap -= edges[i].flow;
    }
} dinic;

int pos[500][2], g[25][25], num[25][25];
char st[25];
int d;

int calc(int px1, int py1, int px2, int py2) {
    return (px2 - px1) * (px2 - px1) + (py2 - py1) * (py2 - py1);
}

void solve() {
    cin >> n >> m >> d;
    int cnt = 0;
    for (int i = 1; i <= n; i++) {
        cin >> st + 1;
        for (int j = 1; j <= m; j++) {
            g[i][j] = (int)(st[j] - '0');
            if (g[i][j] != 0) {
                num[i][j] = ++cnt;
                pos[cnt][0] = i;
                pos[cnt][1] = j;
            }
        }
    }
    int sum = 0;
    for (int i = 1; i <= n; i++) {
        cin >> st + 1;
        for (int j = 1; j <= m; j++) {
            if (g[i][j] != 0) {
                dinic.add_edge(num[i][j], num[i][j] + cnt, g[i][j]);

                if (i <= d || j <= d || n - i + 1 <= d || m - j + 1 <= d) {//可以一步跳出网格的点
                    dinic.add_edge(num[i][j] + cnt, 2 * cnt + 2, inf);
                }
            }
            if (st[j] == 'L') {//s向初始有蜥蜴的点连边 容量为1
                dinic.add_edge(2 * cnt + 1, num[i][j], 1);
                sum++;
            }
        }
    }
    for (int i = 1; i <= cnt; i++)
        for (int j = i + 1; j <= cnt; j++) {
            if (calc(pos[i][0], pos[i][1], pos[j][0], pos[j][1]) <= d * d) {
                dinic.add_edge(num[pos[i][0]][pos[i][1]] + cnt,
                               num[pos[j][0]][pos[j][1]], inf);
                dinic.add_edge(num[pos[j][0]][pos[j][1]] + cnt,
                               num[pos[i][0]][pos[i][1]], inf);
            }
        }
    cout << sum - dinic.maxflow(2 * cnt + 1, 2 * cnt + 2);
}

signed main() {
    ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    cout << fixed << setprecision(12);
    int T = 1;
    // cin >> T;
    while (T--)
        solve();
    return 0;
}

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值