解:令
Pn=1+2+3+…+(n-2)+(n-1)+n,
Qn=n+(n-1)+(n-2)+…+3+2+1,
那么
Pn+Qn=(1+n)+(2+(n-1))+(3+(n-2))+…+((n-2)+3)+((n-1)+2)+(n+1)
=(n+1)+(n+1)+(n+1)+…+(n+1)+(n+1)+(n+1)
=n*(n+1)
又因Pn=Qn,
那么
2Pn=n*(n+1),
所以
Pn=1+2+3+…+(n-2)+(n-1)+n=n*(n+1)/2
解:令
Pn=1+2+3+…+(n-2)+(n-1)+n,
Qn=n+(n-1)+(n-2)+…+3+2+1,
那么
Pn+Qn=(1+n)+(2+(n-1))+(3+(n-2))+…+((n-2)+3)+((n-1)+2)+(n+1)
=(n+1)+(n+1)+(n+1)+…+(n+1)+(n+1)+(n+1)
=n*(n+1)
又因Pn=Qn,
那么
2Pn=n*(n+1),
所以
Pn=1+2+3+…+(n-2)+(n-1)+n=n*(n+1)/2