系统性的对数学知识做了整理,包括各种数学概念、生活中的数学知识、几何图形、中学年代的数学知识、大学年代的数理知识、机器学习算法中的数学概念、多维空间,通过各种各样的图对数学做了阐述,不再只是一个概念,更加具体和形象。
原文链接:https://www.zhihu.com/question/366915371/answer/31099661433
以下数书中的一些内容整理,供参考:
数学中的概念
数字,就是人类思想的空气,无处不在,不可或缺。已经融合到人类生活的方方面面,多数时候,数字像是空气,我们认为它理所应 当,甚至忽略了它的存在。
©️数的概念。
数学,不分种族、不分地域;对于数学来说,其文化世界自成一国。
©️几何的概念。
音乐之美由耳朵来感受,几何之美让眼睛去欣赏
©️坐标系的概念。
笛卡尔坐标系,几何代数一相逢,便胜却人间无数
©️距离的概念。
人是万物的尺度,两点之间最短的路径是一条线段。
©️函数的概念。
代数函数,自变量有限次加、减、乘、除、有理指数幂和开方
生活中的数学
©️几何滥觞于田间地头。
在古埃及,尼罗河每年都要淹没河两岸。当洪水退去,留下的肥沃土壤让河两岸平原的农作物生长。但是洪水同样冲走了标示不同耕地界桩。
法老每年都要派大量测量员重新丈量土地。测绘员们用打结的绳子去丈量土地和角度,以便 重置这些界桩。计算矩形、三角形农田面积当然简单。对于对于复杂的几何形体,测绘员经常将 土地分割成矩形和三角形来估算土地面积。古埃及的几何知识则随着测量精度提高而不断累积精进。
无独有偶,中国古代重要的数学典籍之一《九章算术》的第一章名为“方田”。这一章多数题 目以丈量土地为例,讲解如何计算长方形、三角形、梯形、圆形等等各式几何形状的面积。
©️咖啡杯在六个方向投影图像
©️光照的投影
数学中最常见的投影是正投影。正投影中,投影线 (图 21 中虚线) 垂直于投影面。线性代数中,我们管这类投影叫正交投影 (orthogonal projection)
数学和几何图形
©️点和线
©️圆形
不同半径的圆形
©️抛物线
初等函数:数学模型的基础
斜向上方抛起一个小球,忽略空气阻力影响,小球在空中划出的一道曲线就 可以用抛物线描述。这条抛物线就是二次函数。小球在空中不同时刻的位置,以及最终的落点, 都可以通过二次函数这个模型计算得到。
同样的仰角,斜向上抛出一个纸飞机,纸飞机在空中的飞行轨迹就不得不考虑纸飞机外形、 空气气流这些因素。如图 1 (b) 所示,抛物线已经不足以描述纸飞机的轨迹。
类似的,很多应用场景都需要对抛物线模型进行修正。比如,击打网球时,施加旋转可以改 变网球飞行轨迹。射击时,枪管膛线让子弹旋转飞行,这必然会让其行进轨迹发生变化。发射炮 弹时,空气阻力与炮弹外型和飞行速度有密切关系,这显然会影响炮弹飞行轨迹和落点。
此外,认为抛射物体轨迹为抛物线至少基于几个假设前提。比如,忽略空气阻力的影响;再比如,假设大地平坦;同时假设物体受到的地球引力垂直大地。
中学年代的数学
©️勾股定理
《周髀算经》编写于公元前一世纪之前,其中记录着商高与周公的一段对话。商高说“故折 矩,勾广三,股修四,经隅五。”后人把这一发现简化成——勾三、股四、弦五。《九章算术》的 最后一章讲解的也是勾股定理。
满足勾股定理的一组整数,比如 (3, 4, 5),叫做勾股数。
在西方,勾股定理被称作毕达哥拉斯定理 (Pythagorean Theorem)。
古代很多文明都独立发现了勾股定理。原因也不难理解,古时人们在丈量土地,建造房屋 时,都离不开直角。
古埃及人善于使用绳索构造特定几何关系。比如,绳索等距打结,就可以充当带刻度的直 尺。绳索一端固定,另外一段绕固定端旋转一周,就可以得到正圆。
古埃及人也发现 3:4:5 的直角三角形。据此,利用绳索可以轻松获得直角。绳索等距打 13 个 结,形成 12 段等长线段。按照 3:4:5 比例分配等距线段,3 等分和 4 等分的两边的夹角便是直 角。
勾股定理的一般形式如下:
a2 +b2 =c2
如图 25 所示,a 和 b 为直角边,c 为斜边。图中,a2、b2、c2 分别为三个正方形的面积。
©️圆锥曲线
常见圆锥曲线参数方程
©️一次函数
几种常见的判别函数 f(x) 及其对应图像
©️二次函数
图像开口大小随系数 a 变化。a 的绝对值越大,开口越小,对应二次函 数图像变化越剧烈。
图 14 (a) 所示为函数图像和 h 的关系,显然 h 影响函数在水平方向位置。图 14 (b) 所示为函数 图像和 k 的关系,k 影响函数在竖直方向位置。
©️数学中的凸凹性
凸凹性,凸函数和凹函数
从切线角度来看函数凸凹性
y= f(c)+k(x−c)
©️杨辉三角
几何、代数、概率等知识的有趣联系。
数学中的周期性
©️极值和最值
函数图像看成一座山峰,A、B、C、D、E、F 都是极值,即山峰和山谷的总和。其中,A、B、C 为极大值,即山峰;D、E、F 为极小值,即山谷。显然,B 是最高的山峰,也就是最大值,也叫全局最大值。而 E 是最低的山谷,也就是最小值,也叫全局最小值。
极值
极大值和极小值统称极值 (extrema 或 local extrema)
极大值 (maxima 或 local maxima 或 relative maxima)
极小值 (minima 或 local minima 或 relative minima)
最值
最大值和最小值统称最值 (global extrema)。
最大值 (maximum 或 global maximum 或 absolute maximum)
最小值 (minimum 或 global minimum 或 absolute minimum)
极值是就局部而言,而最值是整体来看。极值是局部的最大或最小值,而最值是整体 的最大或最小值。
©️周期性
f(x+T)= f(x),其中,T 为周期 (period),也叫最小正周期。三角函数就是典型的周期函数。
数学和算法
在机器学习中,欧氏距离是最基础的距离度量,每种距离度量都有自己独特的“等距线”。
其他5类距离的表现
p 和 q 取不同值时,对应超椭圆的形状
a = 1 和 b = 1,t 和 r 取不同值时,超椭球的形状
从平面到多元空间
隐函数 (implicit function) 是由隐式方程 (implicit equation) 所隐含定义的函数
有两个自变量函数叫做二元函数 (bivariate function),比如 y = f(x1, x2)
有多个自变量函数叫做多元函数 (multivariate function),比如 y = f(x1, x2, ... xD) 有 D 个自变量。
f(x1, x2) = x1 + x2 对应的三维空间平面
一个复杂二元函数 f(x1, x2) 对应的曲面
可以引用三体中的一句话:
我们都是阴沟里的虫子,但总还是得有人仰望星空。
如果把数学和图结合在一起,可以很有意思。