常用十种算法—Prim算法
声明:以下是学的尚硅谷网课并结合网上资料所记的笔记。可能会有一些错误,发现了会修改。
普利姆(Prim)算法
应用场景-修路问题
思路: 修路问题的本质就是最小生成树的问题,最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一颗生成树,使树上的所有边上权的总和为最小,这叫最小生成树。
- N个顶点,一定有N-1条边。
- 包含全部顶点。
- N-1条边都在图中。
- 求最小生成树的算法主要是普利姆算法和克鲁斯卡尔算法。
普利姆算法介绍
-
普利姆(Prim)算法求最小生成树,就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有 n 个顶点的连通子图,也就是所谓的极小连通子图。
-
普利姆算法步骤:
(1)设G =(V, E)是连通网,T =(U, D)是最小生成树,V, U是顶点结合,E, D是边的集合;
(2)若从顶点 u 开始构造最小生成树,则从集合 V 中取出顶点 u 放入集合U中,标记顶点 v 的visited[ u ] = 1;
(3)若集合U中顶点 ui 与集合V - U中的顶点 vj 之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点 vj 加入集合U中,将边(ui, vj)加入集合D中,标记visited[ vj ] = 1;
(4)重复步骤(2),直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边;
(5)提示:单独看步骤很难理解,看代码帮助理解。
图解分析
可以看出,7个顶点的极小连通子图有6条边。
代码
import java.util.Arrays;
public class PrimAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建成功
char[] data = new char[] {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs = data.length;
//邻接矩阵的关系使用二维数组描述,用10000表示各地之间不连通
int[][] weight = new int[][] {
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000}};
//创建MGraph对象
MGraph graph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
//输出
//minTree.showGraph(graph);
//测试普利姆算法
minTree.prim(graph, 0);
}
}
//创建最小生成树
class MinTree{
//创建图的邻接矩阵
/**
*
* @param graph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的各个顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph graph, int verxs, char data[], int[][] weight){
int i, j;
for(i = 0; i < verxs; i++) { //顶点
graph.data[i] = data[i];
for(j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的方法
public void showGraph(MGraph graph) {
for(int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//编写Prim算法得到最小生成树
/**
* @param graph 图
* @param verxs 表示从图的第几个顶点开始生成。'A'->0, 'B'->1.。
*/
public void prim(MGraph graph, int verxs) {
//visited 用来标记结点是否被访问过,默认元素都是0,表示没有访问过
int[] visited = new int[graph.verxs];
//把当前这个结点标记为已访问
visited[verxs] = 1;
//h1和h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000; //将minWeight初始化为一个大值,后面在遍历过程中会被替换
//因为有graph.verxs个顶点,普利姆算法结束后,会有graph.verxs-1条边
for(int k = 1; k < graph.verxs; k++) {
//确定每一次生成的子图,和哪个结点的距离最近
for(int i = 0; i < graph.verxs; i++) { //i结点表示被访问过的节点
for(int j = 0; j < graph.verxs; j++) { //j节点表示还没有访问过的节点
if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
//替换minWeight(寻找已经访问过的结点和未访问过的结点的权值最小的边)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到了一条边是最小的
System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
//将当前这个结点标记为已经访问
visited[h2] = 1;
//将minWeight重置为最大值
minWeight = 10000;
}
}
}
class MGraph{
int verxs; //表示图的节点个数
char[] data; //存放结点数据
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
输出:
边<A,G> 权值:2
边<G,B> 权值:3
边<G,E> 权值:4
边<E,F> 权值:5
边<F,D> 权值:4
边<A,C> 权值:7
最小权值即最短路径为25。
--------------------------------------- 个人学习笔记----------------------------------------