pyspark精简笔记

这篇博客详细介绍了 PySpark SQL 的使用,从基本操作到高级功能,如读写 Parquet 和 ORC 文件、JDBC 连接、图像数据处理、Avro 支持以及各种数据操作,包括过滤、分组、排序、聚合函数等。还涵盖了数据转换、日期处理、集合函数和 JSON 处理。此外,还讨论了 PySpark 中的数据可视化、缓存管理和数据库交互,以及如何使用 SQL 查询 Spark 数据帧。
摘要由CSDN通过智能技术生成
spark = sparkSession.builder
.master("")
.appName("")
.getOrCreate()

sc = spark.sparkContext

rdd1 = sc.parallelize(array / list / list(range(10)))



"""
pyspark sql
"""

file_path = "path.parquet"
parquet_df = spark.read.load(file_path, format="parquet")
parquet_df = spark.read.parquet(file_path)
parquet_df.show()

orc_path = "path.orc"
orc_df = spark.read.format("orc").load(orc_path)
orc_df = spark.read.load(orc_path, format="orc")
orc_df = spark.read.orc(orc_path)
orc_df.show()

jdbc_df = spark.read.format("jdbc")
.option(url="", dbtable="", user="", password="")
.load()
jdbc_df=spark.read
.jdbc("url","dbtable",properties={"user":"root","password":"admin"})
jdbc_df=spark.read.format("jdbc")
.option("url","")
.option("dbtable","")
.option("user","root")
.option("password","admin")
.option("customSchema","id DECIMAL(38,0),name STRING,age LONG")
.load()
jdbc_df.show()


#读取图像文件创建df
image_path=""
image_df=spark.read.format("image").option("dropInvalid","true").load(image_path)
image_df.select("image.origin","image.width","image.height","image.nChannels","image.mode").show(truncate=False)


avro_path="path.avro"
avro_df=spark.read.format("avro").load(avro_path)
avro_df.show()



#转换行动算子
"""
选择数据:select
删除某列:drop
过滤数据:where 和 filter(同义的)
限制返回的数量:limit
重命名列:withColumnRenamed
增加一个新的列:withColumn
数据分组:groupBy
数据排序:orderBy 和 sort(等价的)
"""
df.columns  #列名
df.select("colName","colName").show()
df.where(col("colName") > 1).show()  #where=filter
df.where("year<2000")
df.filter("year != 2000")
df.filter(col("year").isin([2001,2022]))
df.where("year>=2000" and length("title") <5)
df.select(expr("colName > 1"),(col("colName") > 1).alias("addCol")).show()  #expr和col一样
df.select( ((col("year")-col("year"))%10).alias("decade") )
df.selectExpr("*","(year-year%10)as decade&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值