【Datawhale X 李宏毅苹果书 AI夏令营】深度学习自适应学习率(AdaGrad/RMSProp/Adam)及其调度 因此在梯度下降里面,所有的参数都是设同样的学习率,这显然是不够的,如果在某一个方向上,梯度的值很小,非常平坦,我们会希望学习率调大一点;如果是三分类采用0/1/3来区分显然是不合适的,这样目标就可以理解为连续的数值类型,不符合我们分类的预测需求;梯度与最后一层的激活函数的导数成正比,多分类交叉熵损失求导更简单,损失仅与正确类别的概率有关。AdaGrad 可以做到梯度比较大的时候,学习率就减小,梯度比较小的时候,学习率就放大。如果每个类都用一个独热向量来表示,就没有类 1 跟类 2 比较接近,类 1 跟。
ChatGPT使用指南——文本推理 在做出选择或处理问题时,推理是通过使用基于新的或现有信息的逻辑来理性地评价事物的能力。推理使你在决定最佳方案或最能满足你的目标的方案之前,能够平衡两个或多个方案的优点和缺点。它还能帮助你解决困难、处理不确定性、核实索赔,并仔细评估情况,以确保你做出的决定符合你的最佳利益[1比如:最近你打算买一台电脑?决定之前,首先你会考虑你的预算,查看你预算范围的产品;其次如果你追求颜值,接下来你会考虑电脑的外观,如果你追求性价比,你会更关注电脑的硬件,比如CPU、GPU、内存等;
Python 可迭代对象(Iterable)、迭代器(Iterator)与生成器(generator)之间的相互关系 Python 可迭代对象(Iterable)、迭代器(Iterator)与生成器(generator)的基本概念、实现原、代码实现及访问方式及其相互关系
【动手学深度学习】深度学习入门介绍 动手学深度学习系列文章总结目录文章目录动手学深度学习系列文章总结目录一、什么是深度学习?二、人工智能的研究热点及重点三、机器学习的训练与预测示例四、机器学习是一个完整的故事总结一、什么是深度学习?二、人工智能的研究热点及重点过去几年的热点三、机器学习的训练与预测示例四、机器学习是一个完整的故事三类人:领域专家、数据科学家、AI专家领域专家:懂业务的相关人士数据科学家和AI专家区别不大总结以上是动手学深度学习的一点总结,望对大家能有所帮助,也希望大家一起学习进步!...
解决 Python3 中绘图Matplotlib版本不同引发的 AttributeError: Unknown property axisbg 问题 报错的代码import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.widgets import Slider, Button, RadioButtonsfig, ax = plt.subplots()plt.subplots_adjust(left=0.25, bottom=0.25)t = np.arange(0.0, 1.0, 0.001)a0 = 5f0 = 3s = a0*np.sin(2*np.pi*f0
解决 Python3 中 TypeError: a bytes-like object is required, not ‘str‘ 1.在运行程序时报错:TypeError: a bytes-like object is required, not ‘str’2.解决方案3.原因问题时 Python2 字符串有 str 和 unicode 两种类型;而 Python3 字符串仅有 str 类型。而Python2 和 Python3 的 str 类型是不同的;Python2中,str 类型和 bytes 类型是同一种类型。以下语句在python2中等效:a = 'ab'a = b'ab'Python3中,str 类型和