描述
信息社会,有海量的数据需要分析处理,比如公安局分析身份证号码、 QQ 用户、手机号码、银行帐号等信息及活动记录。
采集输入大数据和分类规则,通过大数据分类处理程序,将大数据分类输出。
请注意本题有多组输入用例。
输入描述:
一组输入整数序列I和一组规则整数序列R,I和R序列的第一个整数为序列的个数(个数不包含第一个整数);整数范围为0~0xFFFFFFFF,序列个数不限
输出描述:
从R依次中取出R,对I进行处理,找到满足条件的I:
I整数对应的数字需要连续包含R对应的数字。比如R为23,I为231,那么I包含了R,条件满足 。
按R从小到大的顺序:
(1)先输出R;
(2)再输出满足条件的I的个数;
(3)然后输出满足条件的I在I序列中的位置索引(从0开始);
(4)最后再输出I。
附加条件:
(1)R需要从小到大排序。相同的R只需要输出索引小的以及满足条件的I,索引大的需要过滤掉
(2)如果没有满足条件的I,对应的R不用输出
(3)最后需要在输出序列的第一个整数位置记录后续整数序列的个数(不包含“个数”本身)
序列I:15,123,456,786,453,46,7,5,3,665,453456,745,456,786,453,123(第一个15表明后续有15个整数)
序列R:5,6,3,6,3,0(第一个5表明后续有5个整数)
输出:30, 3,6,0,123,3,453,7,3,9,453456,13,453,14,123,6,7,1,456,2,786,4,46,8,665,9,453456,11,456,12,786
说明:
30----后续有30个整数
3----从小到大排序,第一个R为0,但没有满足条件的I,不输出0,而下一个R是3
6— 存在6个包含3的I
0— 123所在的原序号为0
123— 123包含3,满足条件
示例1:
输入:
15 123 456 786 453 46 7 5 3 665 453456 745 456 786 453 123
5 6 3 6 3 0
输出:
30 3 6 0 123 3 453 7 3 9 453456 13 453 14 123 6 7 1 456 2 786 4 46 8 665 9 453456 11 456 12 786
题目链接:
HJ25 数据分类处理
题意:
计算出所有R序列的元素是否被包含在I序列的元素中。输出相应的信息。
思路:
1、先用list存储输入的数据。
2、然后使用set将r序列进行去重和排序,再将set转为list。
3、将I序列转为list类型,方便使用String的contains方法进行判断。
4、遍历新的r序列。
5、遍历新的i序列。先记录r序列的子元素存在多少次—count。
6、判断count值,然后重新遍历i序列,在res中添加相应的信息。
7、这个时候需要在res的0索引位置加入这个res的长度,即后续有多少个整数。
8、遍历输出相应的值。
import java.util.*;
import java.util.stream.Collectors;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int sizeI = sc.nextInt();
List<Integer> listI = new ArrayList<>();
for (int i = 0; i < sizeI; i++) {
listI.add(sc.nextInt());
}
int sizeR = sc.nextInt();
List<Integer> listR = new ArrayList<>();
for (int i = 0; i < sizeR; i++) {
listR.add(sc.nextInt());
}
getSeq(listI, listR);
System.out.println();
}
}
public static void getSeq(List<Integer> listI, List<Integer> listR) {
//去重、排序
Set<Integer> setR = new TreeSet<Integer>(listR);
//转换为list
List<Integer> list = new ArrayList<>(setR);
//转换类型为String
List<String> strI = listI.stream().map(String::valueOf).collect(Collectors.toList());
//结果 res
List<Integer> res = new ArrayList<>();
for (int i = 0;i <list.size();i++){
int count = 0;
String s = String.valueOf(list.get(i));
for (int j =0;j<strI.size();j++){
String s1 = strI.get(j);
if (strI.get(j).contains(s)){
//获取s在i序列中的总数
count ++;
}
}
//count>0表示存在,所以需要在res中插入相应的数据。
if(count >0){
//插入r序列的元素
res.add(list.get(i));
//插入该元素存在的总数
res.add(count);
for (int j = 0;j<strI.size();j++){
if (strI.get(j).contains(s)){
//插入i序列的位置索引
res.add(j);
//插入i序列的元素
res.add(Integer.parseInt(strI.get(j)));
}
}
}
}
//第一个总数值即现在的res长度,所以插入到索引0的位置
res.add(0,res.size());
//遍历输出
for (int i =0;i<res.size();i++){
System.out.print(res.get(i)+" ");
}
}
}
结果:
不足:
占用的时间和空间比较多,后续进行相应优化。