考拉兹序列和方阵路径

这篇博客探讨了考拉兹序列的迭代规则及其从13开始的示例,提出了考拉兹猜想。同时,文章还研究了2×2及20×20方阵中从左上角到右下角的不同路径数量问题。
摘要由CSDN通过智能技术生成

在正整数集上定义如下的迭代序列:

n → n/2 (若n为偶数)

n → 3n + 1 (若n为奇数)

从13开始应用上述规则,我们可以生成如下的序列:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

可以看出这个序列(从13开始到1结束)共有10项。尽管还没有被证明,但我们普遍认为,从任何数开始最终都能迭代至1(“考拉兹猜想”)。

从小于一百万的哪个数开始,能够生成最长的序列呢?

注: 序列开始生成后允许其中的项超过一百万。

public class koalasSequence {
   
    public static void main(String[] args) {
   
        System.out.println(getSequence(1000000));
    }

    public static int getSequence(int num) {
   
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值