给你一个正整数数组 values,其中 values[i] 表示第 i 个观光景点的评分,并且两个景点 i 和 j 之间的 距离 为 j - i。
一对景点(i < j)组成的观光组合的得分为 values[i] + values[j] + i - j ,也就是景点的评分之和 减去 它们两者之间的距离。
返回一对观光景点能取得的最高分。
示例 1:
输入:values = [8,1,5,2,6]
输出:11
解释:i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11
示例 2:
输入:values = [1,2]
输出:2
提示:
- 2 <= values.length <= 5 * 104
- 1 <= values[i] <= 1000
public class maxScoreSightseeingPair1014 {
private static final Logger log = LoggerFactory.getLogger(maxScoreSightseeingPair1014.class);
/**
* 计算最大的观光对分数
* 观光对的分数定义为两个景点的价值之和减去它们之间的距离
*
* @param values 表示每个景点的价值的整数数组
* @return 返回最大的观光对分数
*/
public static int maxScoreSightseeingPair(int[] values) {
// 如果数组为空或长度小于2,则无法形成观光对,返回0
if(values == null || values.length < 2) {
return 0;
}
// 用于存储最大的观光对分数
int maxScore = 0;
log.error("初始化最大的观光对分数:{}", maxScore);
// 初始化当前最大价值索引为数组的第一个元素
int maxValueIndex = values[0];
log.error("初始化当前最大价值索引:{}", maxValueIndex);
// 遍历数组,从第二个元素开始
for(int i = 1; i < values.length; i++) {
log.error("----------------------------------------");
if(values[i] < 0) {
log.error("警告:无效的 values[i] 值:" + values[i]);
continue;
}
log.error("当前下标索引:{}, 当前对应元素:{}", i, values[i]);
// 计算当前观光对的分数
int score = maxValueIndex + values[i] - i;
log.error("当前观光对的分数:{}", score);
// 更新最大的观光对分数
maxScore = Math.max(maxScore, score);
log.error("更新最大的观光对分数:{}", maxScore);
// 更新当前最大价值索引,考虑索引i的价值和索引i的距离之和
maxValueIndex = Math.max(maxValueIndex, values[i] + i);
log.error("更新当前最大价值索引:{}", maxValueIndex);
}
// 返回最大的观光对分数
return maxScore;
}
public static void main(String[] args) {
int[] values = {1,8,5,2,6};
System.out.println(maxScoreSightseeingPair(values));
}
}
后续回过头来发现以上代码中,有几个关键的地方需要调整和优化,以确保代码的正确性和效率。首先,让我们纠正和详细说明代码中的一些错误和概念。
问题纠正
-
初始化
maxValueIndex
:
maxValueIndex
应该初始化为values[0] + 0
,即values[0]
的值加上它的索引(0)。这是因为我们要计算的是values[i] + i
的最大值,这会影响到观光对的分数计算。 -
日志记录:
虽然日志记录对于调试很有帮助,但在生产代码中通常不会使用。这里为了详细解释,我们暂时保留日志,但在实际提交或运行环境中应移除。 -
无效值检查:
values[i] < 0
的检查是不必要的,因为题目已经说明了1 <= values[i] <= 1000
。
详细解释和优化后的代码
public class MaxScoreSightseeingPair {
/**
* 计算最大的观光对分数
* 观光对的分数定义为两个景点的价值之和减去它们之间的距离
*
* @param values 表示每个景点的价值的整数数组
* @return 返回最大的观光对分数
*/
public static int maxScoreSightseeingPair(int[] values) {
// 如果数组为空或长度小于2,则无法形成观光对,返回0
if (values == null || values.length < 2) {
return 0;
}
// 用于存储最大的观光对分数
int maxScore = 0;
// 初始化当前最大价值(考虑索引的值和索引之和)为数组的第一个元素及其索引之和
int maxValueWithIndex = values[0] + 0;
// 遍历数组,从第二个元素开始
for (int i = 1; i < values.length; i++) {
// 计算当前观光对的分数
// 注意这里我们用的是 maxValueWithIndex 而不是之前的 maxValueIndex
int score = maxValueWithIndex - i + values[i];
// 更新最大的观光对分数
maxScore = Math.max(maxScore, score);
// 更新当前最大价值(考虑索引的值和索引之和)
maxValueWithIndex = Math.max(maxValueWithIndex, values[i] + i);
}
// 返回最大的观光对分数
return maxScore;
}
public static void main(String[] args) {
int[] values = {8, 1, 5, 2, 6};
System.out.println("最大观光对分数: " + maxScoreSightseeingPair(values)); // 输出应为11
// 测试更多例子
int[] values2 = {1, 2};
System.out.println("最大观光对分数: " + maxScoreSightseeingPair(values2)); // 输出应为2
}
}
代码解释
-
输入检查:
首先检查输入数组是否为空或长度小于2,这是形成观光对的基本条件。 -
初始化:
maxScore
初始化为0,用于存储最大观光对分数。
maxValueWithIndex
初始化为values[0] + 0
,表示第一个景点的值加上其索引(0)。 -
遍历数组:
从第二个元素开始遍历数组,对于每个元素values[i]
,计算观光对分数maxValueWithIndex - i + values[i]
。
更新maxScore
为当前最大分数和之前计算的最大分数中的较大值。
更新maxValueWithIndex
为当前maxValueWithIndex
和values[i] + i
中的较大值,以便在后续计算中使用。 -
输出结果:
最后输出计算得到的最大观光对分数。
这样,代码不仅更加清晰,而且符合题目的要求,能够正确计算出最大的观光对分数。