[机器学习笔记]Note5--归一化

本文探讨了机器学习中的过拟合问题及其原因,提出通过特征选择和归一化来缓解。重点讲解了归一化线性回归和逻辑回归的代价函数,包括梯度下降和正规方程的应用,以及如何防止归一化参数过大导致低度拟合。
摘要由CSDN通过智能技术生成

继续是机器学习课程的笔记,这节课会介绍归一化的内容。

过拟合问题

这节课会介绍一个在机器学习过程中经常会遇到的问题–过拟合。通常,当我们有非常多的特征,我们可以学习得到的假设可能非常好地适应训练集,即代价函数可能几乎是0,但是可能会不能推广到新的数据,即泛化能力差,对于新的数据预测结果不理想。这就是过拟合问题。而特征非常多也是发生过拟合问题的一个原因之一。

下面是一个回归问题,分别有3个模型,如下所示:
这里写图片描述

第一个模型是一个线性模型,低度拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过度拟合,虽然能非常好地适应我们的训练集,但在新输入变量进行预测时可能会效果不好;而中间的模型则是相对最合适的模型。

在回归问题中会有过拟合问题,同样在分类问题也是有过拟合的问题,例子如下所示:
这里写图片描述

同样是第一个模型是线性模型,只能低度拟合,而第三个模型是一个过渡拟合的模型,对新输入变量进行预测时效果会不好,只有中间的模型是最合适的模型。

那么,当发生过拟合的问题时,我们可以采取下面的措施来避免过拟合:
1. 丢弃一些不能帮助我们正确预测的特征:可以是手工选择保留哪些特征或者使用一些模型选择的算法来帮忙(例如PCA);
2. 归一化。保留所有的特征,但是减小参数的大小

归一化代价函数

在上述回归问题的例子中,对于过拟合的模型是 hθ(x)=θ0+θ1x1+θ2x22+θ3x33+θ4x44

我们决定要减少 θ3θ4 的大小,我们要做的是修改代价函数,在其中对 θ3θ4 设置一点惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小的 θ3θ4 。修改后的代价函数如下:

minθ12mi=1m((hθ(x(i)y(i))2+10000θ23+100000θ24)

通过这样的代价函数选择出来的 θ3θ4 对预测结果的影响就会比之前小许多。

那么假如我们有许多的特征,我们并不知道其中哪些特征需要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。那么代价函数如下所示:

J(θ)=12m[i=1m((hθ(x(i))y(i))2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

spearhead_cai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值