剪刀石头布游戏(相关图片请自行查找)

本文介绍了一个使用Java Swing实现的简单猜拳游戏。游戏包含石头、剪刀、布三个选项,并通过图形用户界面展示了游戏过程及结果。文章详细介绍了如何创建按钮、标签等组件,并为这些组件添加事件监听器来实现游戏逻辑。
package p;
import java.awt.Color;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.AbstractButton;
import javax.swing.ImageIcon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;

public class Test extends JFrame {
	JLabel jl,jl1;
	final JLabel jl2,jl3;
	JLabel jl4;
	public String person;
	public String m;
	int j;
	int i;
	
	final String[] arr = new String[3];

	public void Win(String person) {
		arr[0] = "石头";
		arr[1] = "剪刀";
		arr[2] = "布";
		person = arr[j];
		i = (int) (Math.random() * 3);
		String c = arr[i];
		//判断输赢
		if (c.equals(person)) {
jl4.setText("平手");
		} else if (c.equals("剪刀") && person.equals("石头") || c.equals("石头")&& person.equals("布") || c.equals("布") && person.equals("剪刀")) {
			jl4.setText("你赢了");
		} else {
			jl4.setText("你输了");
		}
	}
	public Test() {
		JFrame jf = new JFrame();
		this.setSize(400, 300);
		this.setTitle("猜拳游戏");
		this.setLayout(null);
		
		jl = new JLabel("电脑出的是:");
		jl.setBounds(50, 50, 100, 50);
		this.add(jl);
		
		jl1 = new JLabel("你出的是:");
		jl1.setBounds(50, 120, 100, 50);
		this.add(jl1);
		// 电脑的出的拳标签
		
		jl2 = new JLabel();
		jl2.setBounds(150, 50, 100, 50);
		this.add(jl2);

		//我出的拳的标签
		jl3 = new JLabel();
		jl3.setBounds(150, 120, 100, 60);
		this.add(jl3);
		
		jl4 = new JLabel("");
		jl4.setBounds(150, 200, 100, 50);
		this.add(jl4);		 
		// 按钮
		 final JButton btn = new JButton("石头");
		btn.setBounds(280, 50, 60, 40);
		this.add(btn);
		
		 final JButton btn1 = new JButton("剪刀");
		btn1.setBounds(280, 105, 60, 40);
		this.add(btn1);
		
		 final JButton btn2 = new JButton("布");
		btn2.setBounds(280, 160, 60, 40);
		this.add(btn2);
		//按钮事件监听
		btn.addActionListener(new ActionListener() {
			public void actionPerformed(ActionEvent arg0) {
				//如果你鼠标点击的是石头按钮
				j = 0;
				String b = btn.getActionCommand();

				jl3.setText(b);
				jl3.setIcon(new ImageIcon("0.jpg"));
				Win(person);
				Test.this.jl2.setIcon(new ImageIcon(String.valueOf(i)+".jpg"));//把对应图片放到该类文件夹下即可显示图片
				 Test.this.jl2.setText(arr[i]); 
				System.out.println(arr[i]);
			}
		});

		btn1.addActionListener(new ActionListener() {
			public void actionPerformed(ActionEvent arg0) {
				j = 1;
				String b1 = btn1.getActionCommand();
				jl3.setText(b1);
				jl3.setIcon(new ImageIcon("1.jpg"));
				Win(person);
				Test.this.jl2.setIcon(new ImageIcon(String.valueOf(i)+".jpg"));
				Test.this.jl2.setText(arr[i]);
				System.out.println(arr[i]);
				// System.out.println(b);
			}
		});
		btn2.addActionListener(new ActionListener() {
			public void actionPerformed(ActionEvent arg0) {
				j = 2;
				String b2 = btn2.getActionCommand();

				jl3.setText(b2);
				jl3.setIcon(new ImageIcon("2.jpg"));
				Win(person);
				Test.this.jl2.setText(arr[i]);
				System.out.println(arr[i]);
				Test.this.jl2.setIcon(new ImageIcon(String.valueOf(i)+".jpg"));
				// System.out.println(b);
			}
		});

		this.setVisible(true);
		this.setDefaultCloseOperation(EXIT_ON_CLOSE);
		this.setLocationRelativeTo(null);
		this.setResizable(false);
	}

	public static void main(String[] args) {
		Test t = new Test();

	}
}

基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,勿用于商业,如有侵权联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值