算法(c++)——0-1背包问题

目录

一、问题描述

二、解题思路

三、代码

四、结果

五、 总结

六、完整程序代码包


一、问题描述

        0-1背包问题。现有n件物品和个容量为c的背包。第i件物品的重量是重量为w[i],价值v[i]。已知对于一件物品必须选择取(用1表示)或者不取(用0表示),且每件物品只能被取一次(这就是“0-1"的含义)。求放置哪些物品进背包,可使这些物品的重量总和不超过背包容量,且价值总和最大。运用动态规划法实现背包最大价值最优装载方式。

二、解题思路

        问题分析:令表示在前个物品中能够装入容量为的背包中物品的最大价值。用表示第个物品:

        即求,其约束条件为: 。根据动态规划的最优性原理寻找递推关系:

        a) 

        b) 

        c) 

        a) b) c)三个公式详细解析:

        a式表示前𝑖个物品中挑选放入承重为0的背包中和没有物品放入承重为𝑗的背包中是相等为0

        b式表明:如果第𝑖个物品的重量大于背包的容量,则装人前𝑖个物品得到的最大价值和装入前𝑖−1个物品得到的最大价是相同的,即物品𝑖不能装入背包。

        c式表明:如果第𝑖个物品的重量小于背包的容量,则会有一下两种情况: (1)如果把第𝑖个物品装入背包,则背包物品的价值等于第𝑖−1个物品装入容量位  的背包中的价值加上第𝑖个物品的价值; (2)如果第𝑖个物品没有装入背包,则背包中物品价值就等于把前𝑖−1个物品装入容量为𝑗的背包中所取得的价值。显然,取二者中价值最大的作为把前𝑖个物品装入容量为𝑗的背包中的最优解。

、代码

#include<stdio.h>
#include<cstdlib>
int V[200][200];//前i个物品装入容量为j的背包中获得的最大价值
int max(int a, int b)//返回两个数中较大的那个数
{
    if (a >= b)
        return a;
    else return b;
}

int KnapSack(int n, int w[], int v[], int x[], int C)
{
    int i, j;
    for (i = 0; i <= n; i++)
        V[i][0] = 0;
    for (j = 0; j <= C; j++)
        V[0][j] = 0;
    for (i = 0; i < n; i++){//外循环控制物品数量,确保每个物品都会被遍历到
        for (j = 0; j < C+1; j++){//内循环控制物品的重量,确保能够遍历出“以前每个物品放入时的最大价值f[i][j]”
            if (j<w[i])
                V[i][j] = V[i - 1][j];
            else
                V[i][j] = max(V[i - 1][j], V[i - 1][j - w[i]] + v[i]);
        }
    }
    j = C;
    for (i = n - 1; i >= 0; i--)
    {
        if (V[i][j]>V[i - 1][j])
        {
            x[i] = 1;
            j = j - w[i];
        }
        else
            x[i] = 0;
    }
    printf("选中的物品是:\n");
    for (i = 0; i<n; i++)
        printf("%d ", x[i]);
    printf("\n");

    return V[n - 1][C];

}

int main()
{
    int n;//物品个数
    printf("请输入物品个数:");
    scanf("%d",&n);
    printf("\n");
    int C;//背包最大容量
    printf("请输入背包最大容量:");
    scanf("%d",&C);
    printf("\n");
    int w[n];//物品的重量
    for(int i = 0; i < n; i++){
        printf("请输入第%d个物品重量:",i+1);
        scanf("%d",&w[i]);
    }
    printf("\n");
    int v[n];//物品的价值
    for(int i = 0; i < n; i++){
        printf("请输入第%d个物品价值:",i+1);
        scanf("%d",&v[i]);
    }
    printf("\n");
    int x[n];//物品的选取状态
    int s;//获得的最大价值

    s = KnapSack(n, w, v, x, C);

    printf("最大物品价值为:\n");
    printf("%d\n", s);
    system("pause");
    return 0;

}

四、结果

        说明:本次测试物品个数为5,背包最大容量为60,物品重量分别是231342933,物品价值分别是5522801244,经计算最终选择的物品为第二件和第三件物品,此时物品的价值最大为102,结果正确。

五、 总结

1、一个问题可以用动态规划法求解的先决条件:

        (1)最有子结构性质:当问题的最优解包含了其子问题的最优解时,成该问题具有最有子结构性质。

        (2)重叠子问题:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。

        满足了以上两个条件的问题可以考虑用动态规划法求解,他是一种自底向上的递归算法。

2、对于此次实验内容:

        (1)抽象之后背包问题转换为找到一个最优的数组,x1, x2,...,xn0-1序列。

        (2)假设最优解的序列为x1, x2....能使背包容量C的总价值最大.

        如果,x1=1,x2....xnC-w1容量的背包的总价值依然是最大的序列;

        如果,x1=0,x2.... xnC容量的背包的总价值依然是最大的序列。这就是最优子结构性质。

        (3)进一步分析: 我们用m(,j)表示为已经判断好了1:i-1的序列的背包最大价值,并且此时的背包剩余的容量为j,对物品进行判断

        如果j>wi,就只要做出选择wi和不选择wi情况下,哪种更能使背包的总价值更大: m(ij)=max{ m(i+ 1.j),m(i+ 1j-wi)+vi}(注意这是个递归式)

         如果j <wi,m(j)=m(i+1j)

        初始化:m(n,j)=vn (j>= wn);

                    m(n,j)=0 (0<=j< wn)

                    m(0,C)=0

        最终的结果: m(1,C)

        (4)采用列表的方法。

六、完整程序代码包

ShiYan2_01BeiBao.rar-讲义文档类资源-CSDN下载算法(c++)——0-1背包问题更多下载资源、学习资料请访问CSDN下载频道.https://download.csdn.net/download/lcf0000/55680704

  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高冷男孩不吃苹果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值