- 博客(14)
- 收藏
- 关注
原创 yolo5&yolo11模型训练与简单结果分析
选择mask _data数据集,其中有测试集141张图,训练集990张图,验证集294张图,为了节省时间快速得到对比结果,同时主要做的是性能分析,所以选择的是一个轻量化的数据集,
2025-04-03 19:27:53
1251
原创 关于FGVC- Aircraft 数据集模型的初步构建与训练
本文章初步搭建了针对Aircraft数据集的神经网络模型,下一篇文章将详细进行优化
2025-03-03 20:16:59
1463
原创 深度学习(一)Pytorch框架基础语法介绍
Pytorch做为主流的深度学习开发框架,在人工智能领域占有极其重要的作用,本章对Pytorch框架的基本语法进行一个介绍,如果之前学习过Numpy,会比较轻松。
2025-02-11 19:23:00
337
原创 机器学习入门(三)数据标准化与PCA降维
当我们做了数据分割时,我们通常会先对训练集x_train使用fit_transform方法,而后仅仅对测试集x_test 进行transform,一定不要将测试集也进行fit_transform方法,因为我们就是通过训练的结果来对测试进行预测的,如果这里也使用fit方法,那么预测的结果将百分百是准确的,因为我们又重新计算了测试集的均值和方差,直接把要用于测试的数据拿来当做训练的数据使用,这是不对的。
2025-02-10 19:57:28
929
原创 机器学习入门(四)——线性回归的重要思想
本章介绍了线性回归的思想,线性回归是深度学习众多算法的基础,正确理解线性回归的过程有助于各位朋友们跨入深度学习领域
2025-02-07 20:17:04
1203
原创 机器学习入门(二)特征提取
我们可以发现,在上述的文本特征提取中,提取出了部分常用的高频词,这些词往往不会蕴含太多有价值的信息,在处理文本的实际过程中,我们需要观察出在本段文本中高频出现,而在其它文本中鲜有出现的词语,才能充分反应该词对本段文本的重要性,因此,我们引入了TfidfVectorizer TF-IDF方法。相反,稠密矩阵就是我们最常见到的矩阵,这里不再赘述,在实际运用中,稠密矩阵常用于代数运算,数学分析,而稀疏矩阵常用于图像处理,机器学习,大规模数据分析等。可以看到,我们也可以顺利提取出中文文本的特征。
2025-02-06 19:38:05
706
原创 机器学习入门(一)机器学习介绍与简单数据集处理
这段代码利用了最常用的KNN算法,来对数据进行处理,首先第一步我们要对数据进行分类,一大类是特征值,一大类是特征值对应的目标值,再通过train_test_split函数将特征值与目标值再次拆分为训练集与测试集,训练集用于对通过KNN算法进行训练,训练完成后,再用测试集进行测试,这便是这段代码的大概思路,当然这段代码因为有输入,避免过于冗杂,所以不够健壮。4.2 可以看到,我们从数据集中通过.data返回的数据,是一个numpy中的ndarray对象,每一行代表一朵花的四个特征值,分别为花瓣与花萼的长宽。
2025-02-05 20:04:48
937
原创 Day4 Numpy学习
DataFrame 一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增,行标签与 DataFrame 中的数据项一一对应当然你也可以用“显式索引”的方式来设置行标签。描述:如果为 True,则直接修改原 DataFrame,而不是返回一个新的 DataFrame。
2024-12-30 09:26:34
1368
原创 Day3-Matplitlib
figure.add_axes():Matplotlib 定义了一个 axes 类(轴域类),该类的对象被称为 axes 对象(即轴域对象),它指定了一个有数值范围限制的绘图区域。语法:ax.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors=None, **kwargs)- ncols: 子图的列数。
2024-12-26 19:57:52
510
原创 Day2-numpy 数据库学习
三 数组的增删改查 增:resize(a, new_shape):a:操作的数组 new_shape:返回的数组的形状,如果元素数量不够,重复数组元素来填充新的形状。ravel:功能上与flatten相同,但是这里返回的是视图,修改返回的一维数组值会影响原数组的值。
2024-12-25 19:15:49
1910
原创 Day1 numpy数据库学习
(1)定义:广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。这要求维数相同,且各维度的长度相同,如果不相同,可以通过广播机制,这种机制的核心是对形状较小的数组,在横向或纵向上进行一定次数的重复,使其与形状较大的数组拥有相同的维度。什么是维度:数组的维度就是一个数组中的某个元素,当用数组下标表示的时候,需要用几个数字来表示才能唯一确定这个元素,这个数组就是几维。这个数组中的每个元素都是目标数组中某个维度上的索引值。
2024-12-24 19:36:01
1457
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人