python学习(三):高级特性

     在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。


切片

取一个list或tuple的部分元素是非常常见的操作,Python提供了切片(Slice)操作符,对应类型为slice类型,能大大简化这种操作。可以先声明一个slice对象,然后对集合对象取部分元素,如:List[slice].有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。


迭代

  • 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。在Python中,迭代是通过for … in来完成的。
  • list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代。默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。由于字符串也是可迭代对象,因此,也可以作用于for循环。
    所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
    那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:isinstance(object,Iterable),若为真则是可迭代对象。

列表生成式

即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?方法一是循环,但是循环太繁琐,而方法二列表生成式,则可以用一行语句代替循环,如:[x * x for x in range(1, 11)];还可以使用两层循环,可以生成全排列,如: [m + n for m in ‘ABC’ for n in ‘XYZ’]。运用列表生成式,可以写出非常简洁的代码。列表解析语法概括如下:
[expr for iter_var in iterable]
[expr for iter_var in iterable if cond_expr]


生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法:

  • 第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator,可以通过next()函数获得generator的下一个返回值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。因为generator也是可迭代对象,所以也可以使用for循环迭代。
  • 如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator;最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中。

迭代器与可迭代对象

  • Iterable:可以直接作用于for循环的对象统称为可迭代对象.
    一类是集合数据类型,如list,tuple,set,frozenset,dict,str等;
    一类是generator,包括生成器和带yield的generator function。
    可以使用isinstance()判断一个对象是否是Iterable对象。
  • Iterator:可以被next()函数调用并不断返回下一个值的对象称为迭代器.
    生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了.
  • 把list、dict、str等Iterable变成Iterator可以使用iter()函数.这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算.Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;
凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值