题目描述
一棵树上有 nn 个节点,编号分别为 11 到 nn,每个节点都有一个权值 ww。
我们将以下面的形式来要求你对这棵树完成一些操作:
I. CHANGE u t : 把结点 uu 的权值改为 tt。
II. QMAX u v: 询问从点 uu 到点 vv 的路径上的节点的最大权值。
III. QSUM u v: 询问从点 uu 到点 vv 的路径上的节点的权值和。
注意:从点 uu 到点 vv 的路径上的节点包括 uu 和 vv 本身。
输入格式
输入文件的第一行为一个整数 nn,表示节点的个数。
接下来 n-1n−1 行,每行 22 个整数 aa 和 bb,表示节点 aa 和节点 bb 之间有一条边相连。
接下来一行 nn 个整数,第 ii 个整数 w_iw
i
表示节点 ii 的权值。
接下来 11 行,为一个整数 qq,表示操作的总数。
接下来 qq 行,每行一个操作,以 CHANGE u t 或者 QMAX u v 或者 QSUM u v 的形式给出。
输出格式
对于每个 QMAX 或者 QSUM 的操作,每行输出一个整数表示要求输出的结果。
输入输出样例
输入 #1复制
4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4
输出 #1复制
4
1
2
2
10
6
5
6
5
16
说明/提示
对于 100 %100% 的数据,保证 1\le n \le 3\times 10^41≤n≤3×10
4
,0\le q\le 2\times 10^50≤q≤2×10
5
。
中途操作中保证每个节点的权值 ww 在 -3\times 10^4−3×10
4
到 3\times 10^43×10
4
之间。
树链剖分模板题,用zkw线段树做的
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
#define int long long
//#define double long double
#define eps 1e-8
//#define mod 1e9+7
using namespace std;
//const int mod=1e9+7;
const int M=1e7+5;
const int N=1e6+5;//?????????? 4e8
struct node
{
int ver,next;
}e[N];
int tot,head[N];
int num;
int a[N],w[N],dfn[N],son[N],sz[N];
int dep[N],fa[N],top[N];
int tree1[N],tree2[N];
int n,m;
void add(int x,int y)
{
e[++tot].ver=y;
e[tot].next=head[x];
head[x]=tot;
}
void addedge(int x,int y)
{
add(x,y),add(y,x);
}
void dfs1(int x,int pre)
{
int maxn=-1;
sz[x]=1,dep[x]=dep[pre]+1;
fa[x]=pre;
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].ver;
if(y==pre) continue;
dfs1(y,x);
sz[x]+=sz[y];
if(sz[y]>maxn)
{
maxn=sz[y];
son[x]=y;
}
}
}
void dfs2(int x,int pre)
{
dfn[x]=++num;
top[x]=pre;
w[num]=a[x];
if(!son[x]) return;
dfs2(son[x],pre);
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].ver;
if(y==fa[x]||y==son[x]) continue;
dfs2(y,y);
}
}
void bulid()
{
for(m=1;m<=n+1;m<<=1);
for(int i=m+1;i<=m+n;i++) tree1[i]=tree2[i]=w[i-m];
for(int i=m-1;i;i--) tree1[i]=tree1[i<<1]+tree1[i<<1|1],tree2[i]=max(tree2[i<<1],tree2[i<<1|1]);
}
void change(int pos,int x)
{
pos+=m;
tree1[pos]=tree2[pos]=x;
pos>>=1;
for(int i=pos;i;i>>=1) tree1[i]=tree1[i<<1]+tree1[i<<1|1],tree2[i]=max(tree2[i<<1],tree2[i<<1|1]);
}
int ask(int f,int l,int r)
{
int ans1=0,ans2=-1e9;
for(l=l+m-1,r=r+m+1;l^r^1;l>>=1,r>>=1)
{
if(~l&1) ans1+=tree1[l^1],ans2=max(ans2,tree2[l^1]);
if(r&1) ans1+=tree1[r^1],ans2=max(ans2,tree2[r^1]);
}
if(f) return ans1;
return ans2;
}
int qus(int f,int x,int y)
{
int ans1=0,ans2=-1e9;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]]) swap(x,y);
ans1+=ask(1,dfn[top[x]],dfn[x]);
ans2=max(ans2,ask(0,dfn[top[x]],dfn[x]));
x=fa[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
ans1+=ask(1,dfn[x],dfn[y]);
ans2=max(ans2,ask(0,dfn[x],dfn[y]));
if(f) return ans1;
return ans2;
}
void solve()
{
int T;
cin>>n;
for(int i=1;i<n;i++)
{
int x,y;
scanf("%lld%lld",&x,&y);
addedge(x,y);
}
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
dfs1(1,1);dfs2(1,1);
bulid();
cin>>T;
while(T--)
{
string s;
int x,y;
cin>>s>>x>>y;
if(s=="CHANGE") change(dfn[x],y);
else if(s=="QMAX") printf("%lld\n",qus(0,x,y));
else printf("%lld\n",qus(1,x,y));
}
}
signed main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);cout.tie(0);
solve();
// puts("");
return 0;
}