目录
本文你主要讲解了随机变量,分布函数的定义及基本性质;离散型随机变量的二项分布和泊松分布;连续型随机变量的定义,概率密度的性质,以及主要的均匀分布,正态分布,标准正态分布,Γ分布和指数分布。
1 随机变量的定义
随机变量
设E是随机试验,它的样本空间S={e}, 如果对于每一个 e∈S, 有一个实数X(e)与之对应,这样就得到定义在样本空间S上的单值实函数X=X(e),称X=X(e)为随机变量。
随机变量分为两类:离散型随机变量和非离散型随机变量。
非离散型随机变量最常见的是连续型随机变量。
分布函数
设X是一个随机变量,x是任意实数,称函数
为随机变量X的分布函数。
由分布函数的定义可知,对任意实数a,b,有
分布函数的基本性质
2 离散型随机变量及其分布
二项分布
设随机变量X具有分布律
其中 0<p<1为常数,则称X服从参数为n,p的二项分布,记为 X ~ B(n,p)
二项分布是专门用来描述只有“成功”和“失败”两种结果的数学模型。
泊松分布
设随机变量X的分布律为
其中λ>0, 则称X服从参数为λ
的泊松分布,记为X~P(λ)
泊松定理:
设随机变量Xn (n=1,2,…)服从二项分布,其分布律为
又设pn=λ>0(n=1,2,…)是常数,则有:
3连续型随机变量及其分布
定义和概率密度的性质
设随机变量X的分布函数为F(x), 若存在非负可积函数f(x), 使对于任意实数x, 有
则称X为连续型随机变量,f(x)称为X的概率密度函数,简称概率密度。
概率密度f(x)具有以下性质:
概率密度的图形称为分布曲线,性质(1)表示分布曲线位于x轴的上方。
均匀分布
如果随机变量X的概率密度为
则称X在(a,b)上服从均匀分布,记为X~U(a,b)
服从均匀分布的概率密度的图形为:
正态分布
如果随机变量X的概率密度为
其中, 则称X服从参数为
的正态分布,记为
.
正态分布又称为高斯分布,f(x)的图形为:
如图可知,f(x)在x=μ处达到最大值
正态分布概率密度曲线的这种“中间高,两头低”的特点反映了在正常状态下一般事物所遵循的客观规律。例如一大群人的身高,特别高大和特别矮小者占少数,而处于中间状态者居多;各种职业的人的合法收入等。
标准正态分布
当μ=0, δ2=1时的正态分布N(0,1)称为标准正态分布。记为X~N(0,1)
通常用φx, Φ(x)分别表示其概率密度和分布函数
标准正态分布的图形函数为:
Γ分布和指数分布
如果随机变量X的概率密度为:
则称X服从分布,记为
当分布的概率密度为:
此时称随机变量X服从参数为β的指数分布