[转载] 【python魔术方法】迭代器(__iter__和__next__)

本文详细介绍了Python中的迭代器和生成器。通过`__iter__`和`__next__`方法,阐述了如何创建可迭代对象和迭代器。通过实例展示了如何使用自定义迭代器模拟`range`函数,强调了迭代器的内存效率和懒加载特性。最后,讨论了迭代器在内存管理和性能优化中的重要性。
摘要由CSDN通过智能技术生成

参考链接: Python __iter __()和__next __()| 将对象转换为迭代器

文章目录

 `__iter__` 和 `__next__`真正的迭代器总结

 

 

 

python里面有很多的以__开始和结尾的函数,利用它们可以完成很多复杂的逻辑代码,而且提高了代码的简洁性,本文主要总结了迭代器用到的魔术方法,并且主要以代码例子进行解释。 

__iter__ 和 __next__ 

其实这里需要引入一个概念,叫迭代器,常见的就是我们在使用for语句的时候,python内部其实是把for后面的对象上使用了内建函数iter,比如: 

a = [1, 2, 3]

for i in a:

    do_something()

 

其实在python内部进行了类似如下的转换: 

a = [1, 2, 3]

for i in iter(a):

    do_something()

 

那么iter返回的是什么呢,就是一个迭代对象,它主要映射到了类里面的__iter__函数,此函数返回的是一个实现了__next__的对象。注意理解这句话,比如: 

class B(object):

    def __next__(self):

        raise StopIteration

 

class A(object):

    def __iter__(self):

        return B()

 

我们可以看见,A这个类实现了一个__iter__函数,返回的是B()的实例对象,其中B里面实现了__next__这个函数。 

下面引入几个概念: Iterable: 有迭代能力的对象,一个类,实现了__iter__,那么就认为它有迭代能力,通常此函数必须返回一个实现了__next__的对象,如果自己实现了,你可以返回self,当然这个返回值不是必须的; Iterator: 迭代器(当然也是Iterable),同时实现了__iter__和__next__的对象,缺少任何一个都不算是Iterator,比如上面例子中,A()可以是一个Iterable,但是A()和B()都不能算是和Iterator,因为A只实现了__iter__,而B只实现了__next__()。 

我们可以使用collections里面的类型来进行验证: 

class B(object):

    def __next__(self):

        raise StopIteration

 

class A(object):

    def __iter__(self):

        return B()

 

 

from collections.abc import *

 

a = A()

b = B()

print(isinstance(a, Iterable))

print(isinstance(a, Iterator))

 

print(isinstance(b, Iterable))

print(isinstance(b, Iterator))

 

结果是: 

True

False

False

False

 

让我们稍微对B这个类做一点修改: 

class B(object):

    def __next__(self):

        raise StopIteration

 

    def __iter__(self):

        return None

 

class A(object):

    def __iter__(self):

        return B()

 

 

from collections.abc import *

 

a = A()

b = B()

print(isinstance(a, Iterable))

print(isinstance(a, Iterator))

 

print(isinstance(b, Iterable))

print(isinstance(b, Iterator))

 

结果是: 

True

False

True

True

 

真正的迭代器 

上面只是做了几个演示,这里具体说明一下: 当调用iter函数的时候,生成了一个迭代对象,要求__iter__必须返回一个实现了__next__的对象,我们就可以通过next函数访问这个对象的下一个元素了,并且在你不想继续有迭代的情况下抛出一个StopIteration的异常(for语句会捕获这个异常,并且自动结束for),下面实现了一个自己的类似range函数的功能。 

class MyRange(object):

    def __init__(self, end):

        self.start = 0

        self.end = end

 

    def __iter__(self):

        return self

 

    def __next__(self):

        if self.start < self.end:

            ret = self.start

            self.start += 1

            return ret

        else:

            raise StopIteration

 

from collections.abc import *

 

a = MyRange(5)

print(isinstance(a, Iterable))

print(isinstance(a, Iterator))

 

for i in a:

    print(i)

 

结果是: 

True

True

0

1

2

3

4

 

接下来我们使用next函数模拟一次: 

class MyRange(object):

    def __init__(self, end):

        self.start = 0

        self.end = end

 

    def __iter__(self):

        return self

 

    def __next__(self):

        if self.start < self.end:

            ret = self.start

            self.start += 1

            return ret

        else:

            raise StopIteration

 

a = MyRange(5)

print(next(a))

print(next(a))

print(next(a))

print(next(a))

print(next(a))

print(next(a)) # 其实到这里已经完成了,我们在运行一次查看异常

 

可以看见一个很明显的好处是,每次产生的数据,是产生一个用一个,什么意思呢,比如我要遍历[0, 1, 2, 3.....]一直到10亿,如果使用列表的方式,那么是会全部载入内存的,但是如果使用迭代器,可以看见,当用到了(也就是在调用了next)才会产生对应的数字,这样就可以节约内存了,这是一种懒惰的加载方式。 

总结 

可以使用collection.abs里面的Iterator和Iterable配合isinstance函数来判断一个对象是否是可迭代的,是否是迭代器对象iter实际是映射到了__iter__函数只要实现了__iter__的对象就是可迭代对象(Iterable),正常情况下,应该返回一个实现了__next__的对象(虽然这个要求不强制),如果自己实现了__next__,当然也可以返回自己同时实现了__iter__和__next__的是迭代器(Iterator),当然也是一个可迭代对象了,其中__next__应该在迭代完成后,抛出一个StopIteration异常for语句会自动处理这个StopIteration异常以便结束for循环 

生成器相关的文档已经在这里。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值