自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(161)
  • 收藏
  • 关注

原创 C++——循环结构

1、循环结构-while语句#include<iostream>using namespace std;int main(){ //while循环 //在屏幕中打印0 ~ 9 这10个数字 //int num = 0; //cout << num << endl; //num++; //cout << num << endl; //num++; //cout << num << endl;

2022-03-08 22:22:20 626

原创 C++——程序流程结构

1、程序流程结构-选择结构-单行if语句#include<iostream>using namespace std;int main(){ //选择结构 单行if语句 //用户输入分数,如果分数大于600,视为考上一本大学,在屏幕上输出 //1、用户输入分数 int score = 0; cout << "请输入一个分数:" << endl; cin >> score; //2、打印用户输入的分数 cout <<

2022-01-04 22:00:18 659

原创 C++——运算符

1、运算符-算数运算符-加减乘除运算#include<iostream>using namespace std;int main() { //加减乘除 int a1 = 10; int b1 = 3; cout << a1 + b1 << endl; cout << a1 - b1 << endl; cout << a1 * b1 << endl; cout << a1 / b1 &

2021-07-05 22:15:42 303

原创 C++ Primer Plus——2.7编程练习

//编写一个C++程序,它显示您的姓名和地址#include <iostream>using namespace std;int main(){ cout << "my name is your father" << endl; cout << "my home in sky" << endl; system("pause"); return 0;}...

2021-05-24 15:31:50 316

原创 C++——数据类型

1、数据类型-整型#include <iostream>using namespace std;int main(){ //整型 //1、短整型(-32768 ~ 32767) short num1 = 32768; //2、整型 int num2 = 32768; //3、长整型 long num3 = 10; //4、长长整型 long long num4 = 10; cout << "num1 = " << num1 &lt

2021-05-21 17:26:34 177

原创 C++——C++基础入门

#include <iostream>using namespace std;int main(){ cout << "Hello C++ !" << endl; system("pause"); return 0;}

2021-05-21 10:00:04 199

原创 TensorFlow——卷积神经网络(三)

1、tf.layers.conv2dimport tensorflow as tf# 设置输入形状为[1,5,5,1] 的随机矩阵input = tf.Variable(tf.random_normal([1, 5, 5, 1]))# 步长为 1 的卷积操作,一个选择'VALID'方式填充一个选择'SAME'方式填充same_conv2d_s1 = tf.layers.conv2d(input, filters=1, kernel_size=3, strides=1, padding='S

2020-10-11 20:20:48 233

原创 TensorFlow——卷积神经网络(二)

1、卷积import cv2import numpy as npimport tensorflow as tf# 读入灰度图片img = cv2.imread('./img/Lenna.jpg', 0)# 显示原图cv2.imshow('yuantu', img)# 设置不同卷积核初值# kernel = np.array(([-1, -1, -1], [-1, 9, -1], [-1, -1, -1]), dtype=np.float32)# kernel = np.array

2020-10-04 13:18:39 169

原创 TensorFlow——TensorBoard应用进阶

1、TensorBoard1import tensorflow as tfimport tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)x = tf.placeholder(tf.float32, [None, 784])y_actual = tf.placeholder(tf.float32,

2020-09-29 16:06:05 198

原创 TensorFlow——模型保存与使用

1、ckpt_saveimport tensorflow as tfimport tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)x = tf.placeholder(tf.float32, [None, 784], name='input')y_actual = tf.placeholder(t

2020-09-29 11:45:08 633

原创 TensorFlow——神经网络参数优化

1、backward# conding:utf-8import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_dataimport mnist_forwsrdimport osBATCH_SIZE = 200LEARNING_RATE_BASE = 0.1LEARNING_RATE_DECAY = 0.99REGULARIZER = 0.0001STEPS = 100000MOVING_

2020-09-29 11:33:24 356

原创 TensorFlow——全连接神经网络识别手写数字(二)

1、Randomimport tensorflow as tfx = tf.random_uniform([10, ], minval=-1, maxval=1)with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) print('x:', sess.run(x))2、ReLUimport tensorflow as tfx = [-5., 0.

2020-09-29 11:02:15 171

原创 TensorFlow——全连接神经网络识别手写数字(一)

1、MINISTimport tensorflow as tfimport tensorflow.examples.tutorials.mnist.input_data as input_datamnist = input_data.read_data_sets("MNIST_data/", one_hot=True)x = tf.placeholder(tf.float32, [None, 784])y_actual = tf.placeholder(tf.float32, [None,

2020-09-29 10:23:56 284

原创 TensorFlow——MNIST手写数字数据集

1、np_mnist_readimport structimport numpy as npimport matplotlib.pyplot as pltdef read_image_files(filename, num): bin_file = open(filename, 'rb') buf = bin_file.read() index = 0 # # 读取前四个数字 # magic, numImage, numRows, numCols =

2020-09-29 10:15:32 340

原创 TensorFlow——神经网络分类异或问题

1、sigmoidimport tensorflow as tfimport numpy as npnp.set_printoptions(suppress=True)# # 与# x = [10., -10., -10., -30.]# # 或# x = [30., 10., 10., -10.]# 非x = [-10., 10.]A = tf.sigmoid(x)with tf.Session() as sess: print(sess.run(A))...

2020-09-29 10:02:17 273

原创 TensorFlow——神经网络非线性回归

1、非线性回归import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt# 使用numpy 生成200个随机点,范围在-0.5--0.5之间,产生了200行1列的矩阵# newaxis = Nonex_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]# 产生随机噪声noise = np.random.normal(0, 0.01, x_data.sh

2020-09-29 09:54:20 502

原创 TensorFlow——神经网络多元线性回归

1、多元线性回归""" CRIM 城镇人均犯罪率 ZN 占地面积超过2.5万平方英尺的住宅用地比例 INDUS 城镇非零售业务地区的比例 CHAS 查尔斯河虚拟变量 (= 1 如果土地在河边;否则是0) NOX 一氧化氮浓度(每千万) RM 平均每居民房数 AGE 在1940年之前建成的所有者占用单位的比例 DIS 与五个波士顿就业中心的加权距离 RAD 辐射状公路的可达性指数 TAX

2020-09-29 09:48:21 2174

原创 TensorFlow——神经网络一元线性回归

1、一元线性回归import tensorflow as tfimport matplotlib.pyplot as pltimport numpy as npa = 2 # 权重b = 1.5 # 偏置# 设置随机种子np.random.seed(5)# 生成100个点,区间为-1到1x_data = np.linspace(-1, 1, 100)# y = x_data * a + b + 噪声y_data = a * x_data + b + np.random.

2020-09-29 09:39:32 650

原创 TensorFlow——TensorBoard可视化工具

1、tensorboard"-----------------矩阵相乘----------------"import tensorflow as tfwith tf.name_scope('graph') as scope: matrix1 = tf.constant([[3., 3.]], name='matrix1') matrix2 = tf.constant([[2.], [2.]], name='matrix2') product = tf.matmul(mat

2020-09-28 11:24:41 161

原创 TensorFlow——TensorFlow基本运算

1、Session实例import tensorflow as tf# 搭建计算图node1 = tf.constant(2.0, tf.float32, name='node1')node2 = tf.constant(3.0, tf.float32, name='node2')node3 = tf.add(node1, node2)'''使用Session的模式一'''sess = tf.Session() # 创建会话print('node3运算结果为:', sess.run

2020-09-28 11:03:07 410

原创 TensorFlow——TensorFlow基础概念

1、张量的形状# import tensorflow as tf## tensor = tf.constant([[[1, 1, 1], [2, 2, 2]],# [[3, 3, 3], [4, 4, 4]],# [[5, 5, 5], [6, 6, 6]]], tf.float32)# print(tensor)import tensorflow as tf# 创建不同形状的张量scalar =

2020-09-27 17:41:36 168

原创 OpenCV——硬币检测与计数的设计实现

1、阈值分割#!/usr/bin/env python3# -*- coding: utf-8 -*-""" 使用函数cv2.threshold()进行简单的阈值处理 函数原型为:threshold(src, thresh, maxval, type[, dst]) -> retval, dst 返回值 retval:当前用来对像素值进行分类的低阈值,默认情况下和参数thresh相等 dst:二值化处理后的图

2020-09-27 17:07:58 7621 1

原创 OpenCV——滑块交互操作

# 1.导入函数库import cv2import numpy as npdef nothing(x): """ 滑动条回调函数:获取滑动条的数值可以在回调函数中进行 :param obj: 空 :return: 空 """ pass# 2.创建一张图片img = np.zeros((500, 500, 3), np.uint8)# 3.创建一个窗口,存放调色板以及滑块cv2.namedWindow("image").

2020-09-22 20:56:01 664

原创 opencv——摄像机标定

1、查找角点#!/usr/bin/env python3import cv2 as cvimport numpy as np""" 打印chessboard.svg到一张A4纸上,这是一张8*8的棋盘, cv.findChessboardCorners 查找棋盘内部角的位置 findChessboardCorners(image, patternSize[, corners[, flags]]) -> retval, corners ima

2020-09-22 16:59:42 892 2

原创 opencv——图像分割(下)GrabCut算法

1、grabcut交互式前景提取# /usr/bin/env python3# coding=utf8"""交互式GrabCut算法,首先按住右键选取矩形框;‘N’键产生分割图;按下‘0’键之后,鼠标左键选择背景区域按下‘1’键之后,鼠标左键选择前景区域"""import cv2 as cvimport numpy as npclass App(object): """docstring for App""" BLUE = [255, 0, 0] # re

2020-09-22 16:28:23 881 1

原创 opencv——图像分割(上)分水岭算法

1、基于分水岭算法的图像分割#!/usr/bin env python3# -*- coding:UTF8 -*-""" OpenCV实现了一个基于掩模的分水岭算法。在这种算法中我们要设置那些山谷点会汇合,那些不会。 这是一种交互 式的图像分割。我们要做的就是给我们已知的对象打上不同的标签。 如果某个区域肯定是前景或对象,就使用某个颜色(或灰度值)标签标记它。 如果某个区域肯定不是对象而是背景就使用另外一个颜色标签标记。 而剩下的不能确定是前景还是背景的

2020-09-22 16:10:09 352 1

原创 opencv——霍夫圆检查

1、霍夫圆检测#!/usr/bin/env python3# -*- coding:UTF8 -*-"""霍夫圆检测cv2.HoughCircles(),函数返回值为圆心坐标(x,y)圆半径R。其函数原型为: HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles重点参数解析: method:定义检测图像中圆的方法。

2020-09-22 16:01:15 3053

原创 opencv——霍夫直线检测

1、标准霍夫直线检测#!/usr/bin/env python3# -*- coding:UTF8 -*-"""标准霍夫直线检测"""import cv2 as cvimport numpy as npdef nothing(x): passimg = cv.imread('bmx.jpg')blur = cv.GaussianBlur(img, (13, 13), -9, -9)cv.imshow('blur', blur)gray = cv.cvtColor

2020-09-22 15:55:51 612

原创 opencv——模板匹配

1、单模板匹配# 单模板匹配import cv2 as cvimg = cv.imread('./test.jpg')model = cv.imread('./face.jpg')h, w = model.shape[:2] # 获取需要检测的模板大小print(h, w)# 平方差匹配法,越接近0说明越匹配res1 = cv.matchTemplate(img, model, cv.TM_SQDIFF)cv.normalize(res1, res1, 0, 1, cv.NO

2020-09-22 15:30:00 214

原创 opencv——图像直方图(下)相似度比较与反向投影

1、彩色图像的直方图对比计算# 彩色图像的直方图对比import cv2 as cvimg1 = cv.imread('test.png')img2 = cv.imread('gray.jpg')hsvt1 = cv.cvtColor(img1, cv.COLOR_BGR2HSV)hsvt2 = cv.cvtColor(img2, cv.COLOR_BGR2HSV)hist1 = cv.calcHist([hsvt1], [0, 1], None, [180, 256], [0, 1

2020-09-21 22:07:01 236

原创 opencv——图像直方图(中)直方图均衡化

1、直方图均衡化import cv2 as cvimport numpy as npfrom matplotlib import pyplot as plt# 绘制直方图def custom_hist(gray): h, w = gray.shape hist = np.zeros([256], dtype=np.uint8) for row in range(h): for col in range(w): pv = gra

2020-09-21 21:49:45 191

原创 opencv——图像直方图(上)直方图分析

1、彩色直方图计算#!/usr/bin env python3# -*- coding:UTF8 -*-# 彩色图像直方图的计算与显示import cv2from matplotlib import pyplot as pltimg = cv2.imread('test.png')cv2.imshow('SrcImage', img)chans = cv2.split(img)colors = ('b', 'g', 'r')plt.title("’Flattened’ Color

2020-09-21 21:39:12 367

原创 opencv——轮廓层次结构

1、轮廓层次结构#!/usr/bin/env python3# encod:utf8import cv2 as cvdef splitContour(img, flag=True): contours, hierarchy = cv.findContours(img, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)[-2:] print(hierarchy) if flag: i = 0 for i in

2020-09-21 21:22:09 388

原创 opencv——轮廓特征及轮廓的性质

轮廓特征1、图像矩#!/usr/bin/env python3# -*- coding:UTF8 -*-"""查找图像轮廓,计算图像矩,根据公式计算轮廓重心图像的重心计算公式 cnt = contours[0] M = cv.moments(cnt) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) M:是一个词典 // 空间矩 double m00, m10, m01,

2020-09-21 21:14:44 761

原创 opencv——轮廓查找及绘制

1、轮廓查找及轮廓绘制#!/usr/bin/env python3# -*- coding:UTF8 -*-"""函数cv2.findContours()是用来在一副二值图像中查找轮廓的,其函数原型如下:findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy 重点参数解析: mode:轮廓检查模式,有四个可选的值,

2020-09-20 17:43:25 547

原创 opencv——傅里叶变换

1、傅里叶变换#!/usr/bin/env python3# encod=utf8import cv2 as cvimport numpy as npfrom matplotlib import pyplot as plt# cap = cv.VideoCapture('./images/stripe.gif')## ret, test_img = cap.read()# test_img = cv.cvtColor(test_img, cv.COLOR_BGR2GRAY)te

2020-09-20 17:29:03 307

原创 opencv——图像边缘检测(下)canny边缘检测器

1、Canny边缘检测#!/usr/bin/env python3# -*- coding: utf-8 -*-"""使用函数cv2.Canny()来进行边缘检测函数原型: Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges 参数解析: threshold1:下阈值,低于下阈值的边界将被抛弃 threshold2:上阈值,高

2020-09-20 14:45:11 331

原创 opencv——图像边缘检测(中)Scharr、Laplacian算子

1、Schaar#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Scharr算子是高斯平滑与微分操作的结合体,所以它具有很好的抗噪声能力。"""import cv2 as cvimport numpy as np'''添加椒盐噪声prob:噪声比例'''def sp_noise(image, prob): output = np.zeros(image.shape, np.uint8) thres = 1 -

2020-09-20 12:10:22 922

原创 opencv——图像边缘检测(上)sobel算子

1、Primitiv# 原始图像梯度算子import cv2import numpy as npmoon = cv2.imread("./sudoku.jpg", 0)row, column = moon.shapemoon_f = np.copy(moon)moon_f = moon_f.astype("float")Primary = np.zeros((row, column))for x in range(row - 1): for y in range(colu

2020-09-19 17:02:13 276

原创 opencv——形态学变换_形态学梯度_礼帽_顶帽

1、形态学梯度#!/usr/bin/env python3# -*- coding: utf-8 -*-import cv2 as cvimport numpy as np""" 开运算:先腐蚀后膨胀, 去除噪声,去除白色小点、空洞 闭运算:先膨胀后腐蚀, 用来填充前景物体的小黑点 形态学梯度:膨胀减去腐蚀, 可以得到前景物体的轮廓 礼帽:原图减去开运算 黑帽:闭运算减去原图 使用函数morphologyEx()进行形态学其他操作

2020-09-19 16:40:45 753

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除