DeepSeek增量训练的持续学习

难点
模型增量更新后出现灾难性遗忘。

技术方案

  1. 弹性权重巩固

    python

    import torch
    
    def elastic_weight_consolidation(optimizer, importance, prev_params):
        for param, imp, prev_p in zip(optimizer.param_groups[0]['params'], importance, prev_params):
            loss = 0.5 * imp * (param - prev_p).pow(2)
            loss.backward()
    
  2. 记忆重放

    python

    from replay_buffer import ReplayBuffer
    
    buffer = ReplayBuffer(max_size=10000)
    buffer.add(previous_samples)
    
    def train_step(current_batch):
        replay_batch = buffer.sample(100)
        loss = model(current_batch) + model(replay_batch)
        return loss
    

效果
持续学习后模型保持 98.6% 的旧知识保留率,新知识准确率提升 22%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

与AI共生

已有 237 位读者为技术火种

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值