第一章 大数据概述
1.1大数据故事
点球(分析对手的特点)
电商(分析消费习惯,广告定点投放等)
1.2大数据背景
无处不在的大数据:科学数据、金融数据、物联网数据、交通数据、社交网络数据、零售数据等
1.3大数据的基本概念
大数据的4V特征:
大数据解决的问题:
1.4大数据涉及到的技术
数据采集、数据存储、数据处理/分析/挖掘、可视化
1.5大数据带来的挑战
对现有数据库管理技术的挑战
经典数据库并没有考虑数据的多类别
实时性的技术挑战
网络架构、数据中心、运维的挑战
其他挑战:数据隐私、数据源的复杂多样等
1.6 挑战之如何对大数据进行存储和分析
系统瓶颈:存储容量、读写速度、计算效率
Google大数据技术:GFS、BigTable、MapReduce
http://blog.csdn.net/myan/article/details/1726553
1.7如何学好大数据
查找官网、英文
项目实战融会贯通
参加社区活动
多动手、多练习、坚持
本文介绍了大数据的概念及其在各行业的应用案例,如通过分析对手特点提高体育竞技成绩、利用消费者行为数据指导电商策略等。文章还探讨了大数据的4V特征,并详细分析了大数据处理涉及的关键技术,包括数据采集、存储、处理、分析、挖掘及可视化等。同时,针对大数据带来的挑战,如存储容量限制、读写速度瓶颈、计算效率低下以及数据隐私保护等问题进行了讨论。
583

被折叠的 条评论
为什么被折叠?



