人工智能最基本的考核问题(上)

本文介绍了深度学习框架TensorFlow中的优化方法,如GradientDescentOptimizer和AdagradOptimizer,以及常用的激活函数relu、sigmoid和tanh。讨论了过拟合现象及其解决方案,包括正则化、调节学习率和数据交叉验证。还探讨了核函数的作用和TensorFlow中的核函数类型,以及朴素贝叶斯方法的优势。最后,阐述了监督学习的基本概念和模型选择的重要性,强调了在实际项目中选择模型时应考虑的因素。
摘要由CSDN通过智能技术生成

1、深度学习框架TensorFlow中都有哪些优化方法?
答:GradientDescentOptimizer
AdagradOptimizer
Optimizer
优化最小代价函数
2、深度学习框架TensorFlow中常见的激活函数都有哪些?
答:relu,sigmoid,tanh
3、深度学习框架TensorFlow中有哪四种常用交叉熵?
答: tf.nn.weighted_cross_entropy_with_logits
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.softmax_cross_entropy_with_logits
tf.nn.sparse_softmax_cross_entropy_with_logits
4、什么叫过拟合,避免过拟合都有哪些措施?
答:过拟合:就是在机器学习中,我么测试模型的时候,提高了在训练数据集的表现力时候,
但是在训练集上的表现力反而下降了。
解决方案:
1.正则化
2.在训练模型过程中,调节参数。学习率不要太大.
3.对数据进行交叉验证
4.选择适合训练集合测试集数据的百分比,选取合适的停止训练标准,使对机器的训练在合适
5.在神经网络模型中,我们可以减小权重

6、什么是核函数?
核函数是将线性不可分的特征映射到高维特征空间,从而让支持向量机算法在这个高维空间线性可变。也就是使用核函数可以向高维空间映射并解决非线性的分类问题

7、深度学习框架TensorFlow中常见的核函数都有哪些?
高斯核函数
线性核函数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值