1、深度学习框架TensorFlow中都有哪些优化方法?
答:GradientDescentOptimizer
AdagradOptimizer
Optimizer
优化最小代价函数
2、深度学习框架TensorFlow中常见的激活函数都有哪些?
答:relu,sigmoid,tanh
3、深度学习框架TensorFlow中有哪四种常用交叉熵?
答: tf.nn.weighted_cross_entropy_with_logits
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.softmax_cross_entropy_with_logits
tf.nn.sparse_softmax_cross_entropy_with_logits
4、什么叫过拟合,避免过拟合都有哪些措施?
答:过拟合:就是在机器学习中,我么测试模型的时候,提高了在训练数据集的表现力时候,
但是在训练集上的表现力反而下降了。
解决方案:
1.正则化
2.在训练模型过程中,调节参数。学习率不要太大.
3.对数据进行交叉验证
4.选择适合训练集合测试集数据的百分比,选取合适的停止训练标准,使对机器的训练在合适
5.在神经网络模型中,我们可以减小权重
6、什么是核函数?
核函数是将线性不可分的特征映射到高维特征空间,从而让支持向量机算法在这个高维空间线性可变。也就是使用核函数可以向高维空间映射并解决非线性的分类问题
7、深度学习框架TensorFlow中常见的核函数都有哪些?
高斯核函数
线性核函数