UVA 536 Tree Recovery 二叉树重建(重建二叉树+DFS)

本题起初采用的是二叉树重建+dfs完成,然后看见网上不用建树也可以完成,也尝试了这种方法

通过中序遍历和先序遍历(或后序遍历)可以重建二叉树,AC代码如下:

二叉树重建+DFS:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=26+2;
char pre_order[maxn],in_order[maxn]; //先序、中序 
int lch[maxn],rch[maxn];   //储存左右节点 
int build_tree(int L1,int R1,int L2,int R2){
	if(L1>R1)return 0; //空树 
	int root=pre_order[L1]-'A'+1;
	int p=L2;
	while((in_order[p]-'A'+1)!=root)p++;
	int cnt=p-L2; //左子树的结点个数
	lch[root]=build_tree(L1+1,L1+cnt,L2,p-1); 
	rch[root]=build_tree(L1+cnt+1,R1,p+1,R2);
	return root;
}
void dfs(int cur){
	if(!lch[cur] && !rch[cur]){   //没有左右子节点(叶子) 
		printf("%c",cur+'A'-1);
		return ;
	}
    if(lch[cur])dfs(lch[cur]);
	if(rch[cur])dfs(rch[cur]);
	printf("%c",cur+'A'-1); 
}
int main(){
    while(scanf("%s%s",pre_order,in_order)==2){
    	int len=strlen(pre_order);
        build_tree(0,len-1,0,len-1);
    	dfs(pre_order[0]-'A'+1);
    	printf("\n");
	}
	return 0;
}


递归:

#include<cstdio>
#include<cstring> 
using namespace std;
const int maxn=26+2;
char pre_order[maxn],in_order[maxn];
void solve(int L1,int R1,int L2,int R2){
	if(L1>R1)return ;
	char root =pre_order[L1]; 
	int p=L2; 
	while(in_order[p]!=root)p++;
	int cnt=p-L2;  //左子结点的个数 
	solve(L1+1,L1+cnt,L2,p-1);
	solve(L1+cnt+1,R1,p+1,R2);
	printf("%c",root);
}
int main(){
	while(scanf("%s%s",pre_order,in_order)==2){
		int len=strlen(pre_order);
		solve(0,len-1,0,len-1);
		printf("\n"); 
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏油

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值