算法提高 排列数
时间限制:1.0s 内存限制:256.0MB
问题描述
0、1、2三个数字的全排列有六种,按照字母序排列如下:
012、021、102、120、201、210
输入一个数n
求0~9十个数的全排列中的第n个(第1个为0123456789)。
012、021、102、120、201、210
输入一个数n
求0~9十个数的全排列中的第n个(第1个为0123456789)。
输入格式
一行,包含一个整数n
输出格式
一行,包含一组10个数字的全排列
样例输入
1
样例输出
0123456789
数据规模和约定
0 < n <= 10!
分析:康拓展开的逆运算 ;
如何判断给定一个位置,输出该位置上的数列,康拓展开的逆运算,例如:
{1,2,3,4,5}的全排列,并且已经从小到大排序完毕,请找出第96个数:
首先用96-1得到95
用95去除4! 得到3余23,即有3个数比该数位上的数字小,则该数位的数字为4;
用23去除3! 得到3余5,即有3个数比该数位上的数字小,理应为4,但4已在前面的高位中出现过,所以该数位的数字为5;
用5去除2!得到2余1,即有2个数比该数位上的数字小,则该数位的数字为3;
用1去除1!得到1余0,即有1个数比该数位上的数字小,则该数位的数字为2;
最后一个数只能是1;
所以这个数是45321
AC代码:
#include<cstdio>
#include<cstring>
using namespace std;
int a[12];
int n;
int jiecheng(int k){
int sum=1;
for(int i=1;i<=k;i++)
sum*=i;
return sum;
}
void cator(int n){
int c[12];
memset(c,0,sizeof(c));
for(int i=0;i<10;i++){
int tmp=n/(jiecheng(9-i));
for(int j=0;j<=tmp;j++){
if(c[j])tmp++;
}
c[tmp]=1;
a[i]=tmp;
n%=jiecheng(9-i);
}
}
int main(){
while(scanf("%d",&n)==1){
memset(a,-1,sizeof(a));
cator(n-1);
for(int i=0;i<10;i++)
printf("%d",a[i]);
printf("\n");
}
return 0;
}
方法二:dfs(250ms)
AC代码:
#include<cstdio>
#include<cstring>
using namespace std;
int vis[12];
int a[12];
int n;
void dfs(int cur){
if(cur==10){
n--;
if(n==0){
for(int i=0;i<10;i++)
printf("%d",a[i]);
printf("\n");
}
return ;
}
for(int i=0;i<=9;i++){
if(!vis[i]){
vis[i]=1;
a[cur]=i;
dfs(cur+1);
vis[i]=0;
}
}
}
int main(){
while(scanf("%d",&n)==1){
memset(vis,0,sizeof(vis));
dfs(0);
}
return 0;
}
方法三:应用STL中的next_permutation()函数求下一个排列(187ms)
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[]={0,1,2,3,4,5,6,7,8,9};
int n;
int main(){
while(scanf("%d",&n)==1){
for(int i=0;i<n-1;i++){
next_permutation(a,a+10);
}
for(int i=0;i<10;i++)
printf("%d",a[i]);
printf("\n");
}
return 0;
}