逻辑公式等价证明工具与阅读障碍学生的学习困境
1. 逻辑公式等价证明策略
1.1 公共子公式处理
检查两个公式 φ 和 ψ 是否有相同的子公式 χ(非命题字母)。将 φ 和 ψ 中的 χ 用新的命题字母替换,检查得到的公式是否仍然等价。若等价,则将 χ 视为原子,不对其进行重写。这种替换对学生不可见,只是策略不会对这些子公式进行转换,但学生仍可对其重写。
1.2 化为相等形式的步骤
在很多情况下,φ 和 ψ 的范式在结合律和交换律下相等,通过简单的重新排序(应用交换律)即可完成证明。但有时差异更为根本,此时需执行以下步骤:
- 消除不同命题字母 :若 φ 和 ψ 范式中出现的命题字母集合不同,通过应用简化规则消除仅在其中一个范式中出现的字母。
- 重写特定子公式 :若 φ 包含(在交换律下)形式为 p ∨(¬p ∧χ) 的子公式,而 ψ 包含 p ∨χ,则使用分配律和真假规则将 p ∨(¬p ∧χ) 重写为 p ∨χ。
- 扩展为完全范式 :若无法进行其他简化,使用真假规则和分配律将范式扩展为完全范式。每个合取对应真值表的一行,完全范式(在交换律下)是唯一的,可保证等价证明的完成。
该工具的主要目的是提高学生应用重写规则的技能,让学生学会识别简单的等价关系。不要求学生记忆重写策略,其作用仅为提供合理的提示和详细的示例。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



