一、考试目的
评估考生对基础理论知识、常用工具与技术、数据处理方法的掌握程度,以及初步的模型构建与优化能力,确保其能够在实际工作中有效参与到大模型训练项目中。
二、考试内容与结构
对基础知识熟练运用,具有机器学习与深度学习基础,能对基础算法理解(线性回归、逻辑回归、SVM等)、激活函数类型及作用、优化器与损失函数的选择原则。熟悉神经网络架构,包括CNN、RNN、Transformer架构特点、自编码器与变分自编码器原理。熟悉深度学习框架包括PyTorch、TensorFlow基本操作与差异、如何在框架中加载预训练模型。熟练掌握数据科学基础,包括数据清洗与预处理方法、数据标准化与归一化的作用、常见数据集介绍。
具有模型构建与训练的能力,熟悉模型构建,能够完成给定任务,设计简单的神经网络结构(如使用哪些层,层数与节点数)、描述模型训练前的准备步骤(数据集划分、超参数设置)。熟练掌握训练与优化,能够解释早期停止、学习率衰减的作用,能够识别并解决过拟合问题。能够进行数据处理,包括实现数据增强、数据标准化
具有案例分析能力,能够分析一个大模型训练案例,指出使用的模型架构、数据处理方法、训练策略,并评价其效果。能够进行实践操作描述,能够使用预训练模型进行文本分类,描述采取的步骤,包括模型选择、数据预处理、模型微调策略及评估方法。
考试题型
选择题:考查基础理论与技术点掌握情况。
填空题与简答题:评估对技术细节的理解与应用。
案例分析题:分析具体项目案例,评价技术决策与实施效果。
实操题:根据给定条件,设计并执行一个模型训练任务,提交代码与报告。
三、考试要求
考生需具备基本的数学与编程基础。
考试时间为180分钟,全程闭卷。
考生应能熟练运用所学知识解决实际问题,展现出对大模型训练流程的深刻理解。
四、评分标准
答案准确度:依据答案与标准答案的吻合程度评分。
分析深度与逻辑性:案例分析题注重解决方案的合理性和逻辑连贯性。
实践操作的可行性与创新性:考察考生能否结合理论知识提出有效的实践方案。
通过本考试的考生,应能证明其具备进入AGI大模型训练领域工作的基本技能与理论基础。
如何系统学习AI大模型?(附全套学习资源)
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份**
全面的AI大模型学习资源
**,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。