AI
文章平均质量分 93
知行小栈
专注分享优质内容,喜欢就点个关注吧!
展开
-
深度学习:手写感知机
上面是一只猫,人类的大脑可以很轻松地识别出。人脑是如何识别的呢?人类能够识别出这只猫,是因为这张图片具有猫的典型特征。例如,猫的耳朵、眼睛、猫须、嘴巴等独特的形态特征,可以迅速引起大脑的注意和识别。当我们的大脑看到这些特征时,能够与之前的经验相匹配,从而判断出这是一只猫。计算机是否可以模拟人脑的方式,判断出这是一只猫呢?要让计算机模拟人脑的识别过程,首先需要了解人脑的基本工作原理。一个刚出生的大脑虽然有一定的感知能力,但识别能力尚未完全发育。原创 2024-10-12 07:00:00 · 823 阅读 · 0 评论 -
深度学习架构演变:从感知机到Transformer的技术革新
深度学习自诞生以来,经历了多次技术迭代,逐步解决了模型的复杂性、训练效率和对各种数据类型的适应能力等问题。从早期的简单神经网络到如今大规模预训练模型的广泛应用,深度学习架构的发展推动了人工智能的迅速进步。本文将清晰梳理深度学习架构从起步到当前阶段的发展历程。原创 2024-10-05 08:30:00 · 1400 阅读 · 0 评论 -
GPT 的工作原理:深入解析
GPT(Generative Pretrained Transformer)是一种基于 Transformer 架构 的自然语言处理模型。通过对用户输入的文本进行语义分析,GPT 能够生成连贯、符合上下文的回答。输入处理Transformer 内部计算自注意力机制输出生成。本文将逐步解析这些步骤,尤其是 Transformer 的详细结构和机制,并通过具体示例说明每一步的作用。Transformer 是由多层堆叠的编码器-解码器(Encoder-Decoder)结构演化而来,但 GPT 仅使用其中的解码器。原创 2024-10-04 08:30:00 · 1205 阅读 · 0 评论