人工智能
文章平均质量分 53
LearnerzzZ
这个作者很懒,什么都没留下…
展开
-
【Locust错误解决】:KeyError: ‘Dummy‘
locust错误解决:KeyError: 'Dummy'Locust + Prometheus + Grafana原创 2022-06-03 11:19:56 · 494 阅读 · 1 评论 -
计算机视觉三大顶会(CVPR、ICCV、ECCV)网址
【CVPR】:dblp: Computer Vision and Pattern Recognition【ICCV】:dblp: ICCV【ECCV】:dblp: ECCV原创 2022-03-04 11:29:23 · 5002 阅读 · 0 评论 -
感知机(perceptron)代码实现
(书面内容参考《统计学习方法》李航)感知机(perceptron)是二分类的线性模型,旨在求出将训练数据进行线性划分的分离超平面。感知机模型:假设输入空间(特征空间)是x⊆Rn,输出空间是输入x∊x表示实例的特征向量,对应于输入空间(特征空间)的点;输出y∊表示实例的类别。由输入空间到输出空间的如下函数:称为感知机。其中,w和b为感知机模型参数,w∊Rn叫作权值(weight)或权值向量(weight vector),b∊R叫作偏置(bias),w·x表示w和...原创 2021-08-07 12:01:36 · 4583 阅读 · 0 评论 -
极大似然估计
1.背景及定义概率模型的训练过程就是参数估计,确定好了参数也就训练好了模型。统计学对于参数估计主要分成两个部分,频率主义学派和贝叶斯学派,其中频率主义学派认为参数是客观固定的未知常量,他们主要通过优化似然函数等准则来确定参数量;而贝叶斯学派则认为参数是随机变量,本身具有分布,他们假定参数服从一个先验分布,然后基于观测到的数据来计算参数的后验分布。极大似然估计是频率主义学派的内容,它的目的就是估计出频率主义学派中认定的未知常量。极大似然估计的主要思想是利用已知的样本来求出最大概率出现这种情况的原创 2021-07-17 15:59:44 · 265 阅读 · 0 评论 -
机器学习之回归问题
监督学习主要有三大类:分类问题 标注问题 回归问题其中,回归问题用于预测输入与输出之间关系,相当于输入与输出相互映射的函数,回归问题的学习等价于函数拟合。回归问题由学习和预测两个部分组成。首先学习系统输入训练数据构建模型,然后利用模型对新的输入训练集进行预测,得到新的相应输出,就是回归问题。...原创 2021-07-15 10:01:25 · 814 阅读 · 0 评论 -
《Deep-Learning-with-PyTorch》学习笔记Chapter15 Deployment(一)
(自学《Deep-Learning-with-PyTorch》使用,仅供参考)1.对于部署模型,本书中主要使用了两个轻量级Python web框架:Flask(http://flask.pocoo.org)和Sanic(https://sanicframework.org)。Flask是最流行的框架,而Sanic和Flask本质上相同,但比Flask多了一个对Python中async/await的异步操作,提高了效率。2.对于Pytorch模型,ONNX(开放神经网络交换)格式可以导出模型的标准原创 2021-04-14 20:17:39 · 160 阅读 · 0 评论 -
《Deep-Learning-with-PyTorch》学习笔记Chapter3 Tensor(一)
(自学《Deep-Learning-with-PyTorch》使用,仅供参考)一、绪论深度学习应用是以某种形式(图片或文本)获取数据,然后以另一种形式(标签、数字或更多的图像或文本)生成数据。深度学习实际上是建立一个系统,该系统可以将数据一种表示转换为另一种表示。我们首先学习如何使用Tensor处理PyTorch中所有的浮点数。二、将输入转换为浮点数浮点数是网络处理信息的方式,因此我们需要将现实世界中的数据编码成网络可以消化的形式,然后将输出再解码为我们可以理解并使用的数..原创 2021-03-11 11:59:05 · 190 阅读 · 0 评论 -
TensorFlow object detection API部分原理之SSD算法
一、SSD(Single Shot MultiBox Detector)算法SSD算法是Faster R-CNN和YOLO的组合,因此性能方面能比两者好一些。SSD的网络结构图:看图分析:①首先是一个VGG-16的卷积层其中Conv4_3层, Classifier:Conv:3*3*(4*(Classes+4))因此这一层提取出的feature map=38*38②接着是两个卷积层(FC6、FC7)...原创 2021-03-10 20:29:06 · 313 阅读 · 0 评论 -
Tensorflow object detection API应用大致流程
一、配置环境选择TensorFlow__GPU版本超级复杂……不愿回忆二、下载APIGitHub TensorFlow object detection API三、准备数据集在下好的object detection文件夹下新建images文件夹以存放数据集(图片)。images文件夹下再新建两个文件夹分别命名:train和test把预先准备的大量训练数据,按照一定的比例(5:1、6:1、7:1都可以)分成两部分,分别放到两个文件夹下(多的放train,..原创 2021-03-10 17:02:10 · 387 阅读 · 0 评论