洗牌算法

本文介绍了洗牌算法,主要用于产生等概率随机序列,适用于游戏、随机排序等场景。Fisher-Yates Shuffle、Knuth-Durstenfeld Shuffle和Inside-Out Algorithm是三种常见的洗牌算法,其中Fisher-Yates Shuffle具有O(n)的时间复杂度。文章详细解析了Fisher-Yates Shuffle的实现原理和JavaScript代码示例,并探讨了如何确保算法生成的序列完全随机。
摘要由CSDN通过智能技术生成

这里是修真院前端小课堂,每篇分享文从

洗牌算法具体指的是什么?
(1)背景介绍:

洗牌算法(Shuffling Algorithm),顾名思义,它的产生是用来解决类似洗牌这种场景的问题的,目的是产生一串等概率的随机列,使得很难去预测牌的顺序。

洗牌算法是我们常见的随机问题,在玩游戏、随机排序时经常会碰到。 本质是让一个数组内的元素随机排列,即数组乱序。

什么是好的洗牌算法

洗牌之后,如果能够保证每一个数出现在所有位置上的概率是相等的,那么这种算法是符合要求的;这在个前提下,尽量降低时间和空间复杂度。

(2)知识剖析:

FISHER–YATES SHUFFLE

其算法思想就是 从原始数组中随机抽取一个新的元素到新数组中

1.从还没处理的数组中,产生一个[0, n]之间的随机数 random

2.从剩下的n个元素中把第 random 个元素取出到新数组中

3.删除原数组第random个元素

4.重复第 2 3 步直到所有元素取完

5.最终返回一个新的打乱的数组

KNUTH-DURSTENFELD SHUFFLE

每次从未处理的数组中随机取一个元素,然后把该元素放到数组的尾部,即数组的尾部放的就是已经处理过的元素,这是一种原地打乱的算法,每个元素随机概率也相等,时间复杂度从 Fisher 算法的 O(n2)提升到了 O(n)

1.选取数组(长度n)中最后一个元素(arr[length-1]),将其与n个元素中的任意一个交换,此时最后一个元素已经确定

2.选取倒数第二个元素(arr[length-2]),将其与n-1个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值