关系代数是一种抽象的查询语言,用对关系的运算来表达查询,作为研究关系数据语言的数学工具。1
目录
基本的关系代数算法
传统的集合运算
并 ∪ \cup ∪
- 要求:参与并运算的两张关系表必须具有相同的属性(列名);
- 运算方法:选取R、S关系表中的所有元组合并,建立新表;
- 表达式:
R ∪ S = { i ∣ i ∈ R ∨ i ∈ S } . R \cup S = \{ i|i \in R \vee i \in S\}. R∪S={i∣i∈R∨i∈S}.
交 ∩ \cap ∩
- 要求:参与交运算的两张关系表必须具有相同的属性(列名);
- 运算方法:选取R、S关系表中的所有相同元组,建立新表;
- 表达式:
R ∩ S = { i ∣ i ∈ R ∧ i ∈ S } . R \cap S = \{ i | i \in R \wedge i \in S \}. R∩S={i∣i∈R∧i∈S}.
差 − - −
- 要求:参与交运算的两张关系表必须具有相同的属性(列名);
- 运算方法:选取R表中与S表中任意元组不同的元组,建立新表;
- 表达式:
R − S = { i ∣ i ∈ R ∧ i ∉ S } . R - S = \{ i | i \in R \wedge i \notin S \}. R−S={i∣i∈R∧i∈/S}.
笛卡尔积(广义) × \times ×
- 要求:R表和S表可以拥有不同的属性(列);
- 运算方法:R的每一行元组后面都要跟随S的所有元组;
- 表达式:
R × S = { i R i S ^ ∣ i R ∈ R ∧ i S ∈ S } . R \times S = \{ \widehat{i_R i_S} | i_R \in R \wedge i_S \in S \}. R×S={iRiS ∣iR∈R∧iS∈S}.
专门的集合运算
选择 σ \sigma σ
- 要求:拥有一个基于R表中属性A(列A)的逻辑表达式F;
- 运算方法:从R表中选择符合逻辑表达式F的元组(行),建立新表;
- 表达式:
F ( i ) = i [ A ] θ a ( θ 为比较运算符 , 可为 > , < , ≥ , ≤ , = 或 ≠ ) , σ F ( R ) = { i ∣ i ∈ R ∧ F ( i ) } . F(i)=i[A]\,\theta\,a \\ (\theta 为比较运算符,可为>,<,\geq,\leq,=或\neq),\\ \sigma_F(R)= \{ i | i \in R \wedge F(i)\}. F(i)=i[A]θa(θ为比较运算符,可为>,<,≥,≤,=或=),σF(R)={i∣i∈R∧F(i)}.
投影 π \pi π
- 要求:所选的属性组A,B必须来源于R表的属性(列名);
- 运算方法:从R表中选择指定的属性组(列),建立新表;
- 表达式:
π A , B ( R ) = { i [ A , B ] ∣ i ∈ R } . \pi_{A,B}(R)= \{ i[A,B] | i \in R \}. πA,B(R)={i[A,B]∣i∈R}.
象集(选择+投影)
- 要求:所选的具体属性值a必须来源于R表中存在的属性(列);
- 运算方法:从R表中选择指定的属性值a所在的行,投影出剩下的其他属性Z,建立新表;
- 表达式:
π Z ( σ A = a ( R ) ) = { i [ Z ] ∣ i ∈ R ∧ i [ A ] = a } . \pi_{Z}(\sigma_{A=a}(R))= \{ i[Z] | i \in R \wedge i[A]=a \}. πZ(σA=a(R))={i[Z]∣i∈R∧i[A]=a}.
连接 ⋈ \bowtie ⋈
- 要求:A、B属性组(列)必须分别为R表和S表中的属性,且具有可比性(如皆为日期属性、数值属性等);
- 运算方法:先使用广义笛卡尔积(见上文)算出R × \times ×S,再在R × \times ×S中选取符合逻辑表达式F的元组,建立新表;
- 表达式:
F ( i ) = i R [ A ] θ i S [ B ] ( θ 为比较运算符 , 可为 > , < , ≥ , ≤ , = 或 ≠ ) , R ⋈ F S = { i R i S ^ ∣ i R ∈ R ∧ i S ∈ S ∧ F ( i ) } . F(i)=i_R[A] \,\theta\, i_S[B]\\ (\theta 为比较运算符,可为>,<,\geq,\leq,=或\neq),\\ R\mathop{\bowtie}\limits_{F} S=\{\widehat{i_Ri_S} | i_R \in R \wedge i_S \in S \wedge F(i) \}. F(i)=iR[A]θiS[B](θ为比较运算符,可为>,<,≥,≤,=或=),RF⋈S={iRiS ∣iR∈R∧iS∈S∧F(i)}.
等值连接
- 要求:在满足连接要求的前提下,逻辑表达式F中的 θ \,\theta\, θ为“ = \,=\, =”;
- 运算方法:先使用广义笛卡尔积(见上文)算出R × \times ×S,再在R × \times ×S中选取表R的属性A与表S的属性B值相等的元组,建立新表;
- 表达式:
R ⋈ A = B S = { i R i S ^ ∣ i R ∈ R ∧ i S ∈ S ∧ i R [ A ] = i S [ B ] } . R\mathop{\bowtie}\limits_{A = B} S=\{\widehat{i_Ri_S} | i_R \in R \wedge i_S \in S \wedge i_R[A] = i_S[B] \}. RA=B⋈S={iRiS ∣iR∈R∧iS∈S∧iR[A]=iS[B]}.
自然连接
- 要求:在满足连接要求的前提下,R表和S表中必须要有至少一个相同的属性C(列C);
- 运算方法:先使用广义笛卡尔积(见上文)算出R × \times ×S(即下图中右侧较大的整个表),再在R × \times ×S中选取两表中属性C值 相等 的元组,建立新表,并删除重复的相同属性组,仅保留一组即可;
- 表达式:
R ⋈ S = { i R i S ^ ∣ i R ∈ R ∧ i S ∈ S ∧ i R [ A ] = i S [ A ] } . R\bowtie S=\{\widehat{i_Ri_S} | i_R \in R \wedge i_S \in S \wedge i_R[A] = i_S[A] \}. R⋈S={iRiS ∣iR∈R∧iS∈S∧iR[A]=iS[A]}.
除 ÷ \div ÷
- 要求:在满足连接要求的前提下,R表和S表中必须要有相同的属性A(列A);
- 运算方法:寻找S表中与R表相同的属性组X(列),在R表中寻找匹配S表属性的元组,选取含有S表中属性组X的所有属性的R表元组,再对选出的元组做关于属性X的象集(见上文)得到;
*具体算法建议参考 关系代数运算——除法运算_Jack浩2; - 表达式:
R ÷ S = { i R ( X ) ∣ i R ∈ R ∧ π Y ( S ) ⊆ Y X } ( Y X = π Z ( σ X = i R [ X ] ( R ) ) ) . R\div S=\{i_R(X) | i_R \in R \wedge \pi_Y(S) \subseteq Y_X \}\\(Y_X=\pi_{Z}(\sigma_{X=i_R[X]}(R))). R÷S={iR(X)∣iR∈R∧πY(S)⊆YX}(YX=πZ(σX=iR[X](R))).
以上大部分整理 来源于《数据库系统概论(第5版)》高等教育出版社3,如有问题请不吝赐教,谢谢