导数

导数在数学中扮演重要角色,用于分析函数的单调性、凹凸性及极值问题。一阶导数正负决定函数单调增减,二阶导数决定曲线的凹凸。泰勒公式提供函数近似的多项式表达。极值判定涉及一阶和二阶导数,而方向导数和梯度则揭示了函数变化最快的方向。此外,积分作为导数的逆运算,用于计算原函数和二重积分。
摘要由CSDN通过智能技术生成

导数的应用

  1. 若一阶导数大于0,则单调递增;若一阶导数小于0,则单调递减;导数等于零的点为函数的驻点
  2. 若二阶导数大于0,则曲线是凹的;若二阶导数小于0,则曲线是凸的。曲线上凹凸性改变的点为曲线的拐点
  3. 如果函数的导函数在某一个区间内恒大与零(或恒小于零),那么函数在这个区间单调递增(或单调递减),这种区间就叫做单调区间;如果函数的二阶导函数在某一个区间内恒大于零(或恒小于零),那么曲线在这个区间是凹的(或凸的),这种区间就叫做凹凸区间

设函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上连续,在 ( a , b ) (a,b) (a,b)内可导,

  1. 如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) > 0 f'(x)>0 f(x)>0,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调增加
  2. 如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) < 0 f'(x)<0 f(x)<0,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b]上单调减少

设函数 f ( x ) f(x) f(x)在区间 I I I上连续, ∀ x 1 , x 2 ∈ I \forall x_1,x_2 \in I x1,x2I

  1. 若恒有 f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2}) <\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2),则称 f ( x ) f(x) f(x)的图形是凹的
  2. 若恒有 f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2}) >\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2),则称 f ( x ) f(x) f(x)的图形是凸的
    连续曲线上凹弧与凸弧的分界点称为曲线的拐点

设函数 f ( x ) f(x) f(x)在区间 I I I上有二阶导数

  1. I I I f ′ ′ ( x ) > 0 f''(x)>0 f(x)>0,则 f ( x ) f(x) f(x)内图形是凹的
  2. I I I f ′ ′ ( x ) < 0 f''(x)<0 f(x)<0,则 f ( x ) f(x) f(x)内图形是凸的

求极值的步骤:

  1. 确定函数的定义域
  2. 求导数 f ′ ( x ) f'(x) f(x)
  3. 求定义域内部的极值嫌疑点(即驻点或一阶导数不存在的点)
  4. 用极值判定第一或第二充分条件,注意第二充分条件只能判定驻点的情形

极值存在的第一充分条件
设函数 f ( x ) f(x) f(x) x 0 x_0 x0连续,且在 x 0 x_0 x0的某去心领域 ⋃ 0 ( x 0 , δ ) \displaystyle \bigcup^{0}(x_0,\delta) 0(x0,δ)内可导,

  1. 若当 x ∈ ( x 0 − δ , x 0 ) x \in (x_0- \delta,x_0) x(x0δ,x0)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0;当 x ∈ ( x 0 , x 0 + δ ) x \in (x_0,x_0+ \delta) x(x0,x0+δ)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值
  2. 若当 x ∈ ( x 0 − δ , x 0 ) x \in (x_0- \delta,x_0) x(x0δ,x0)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0;当 x ∈ ( x 0 , x 0 + δ ) x \in (x_0,x_0+ \delta) x(x0,x0+δ)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值
  3. x ∈ ⋃ 0 ( x 0 , δ ) \displaystyle x \in \bigcup^{0}(x_0,\delta) x0(x0,δ)时, f ′ ( x ) f'(x) f(x)符号保持不变,则 f ( x ) f(x) f(x) x 0 x_0 x0处无极值

极值存在的第二充分条件
设函数 f ( x ) f(x) f(x)在它的驻点 x 0 x_0 x0处二阶可导,则

  1. 如果 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f(x0)>0,则 x 0 x_0 x0为极小值点
  2. 如果 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f(x0)<0,则 x 0 x_0 x0为极大值点
  3. 如果 f ′ ′ ( x 0 ) = 0 f''(x_0)=0 f(x0)=0,则无法判断
    注意第二充分条件只能判定驻点的情形

泰勒公式是用一个函数在某点的信息描述其附近取值的公式。如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数构建一个多项式近似函数在这一点的邻域中的值

泰勒公式
如果函数 f ( x ) f(x) f(x)在含 x 0 x_0 x0的某个开区间 ( a , b ) (a,b) (a,b)内具有直到 ( n + 1 ) (n+1) (n+1)阶导数,则对 ∀ x ∈ ( a , b ) \forall x \in(a,b) x(a,b)
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) n ! ( x − x 0 ) n + R n ( x ) (1) f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2+ \cdots + \frac{f^{(n)}}{n!}(x-x_0)^n + R_n(x) \tag{1} f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(xx0)n+Rn(x)(1) R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! (2) R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \tag{2} Rn(x)=(n+1)!f(n+1)(ξ)(2)
P n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) n ! ( x − x 0 ) n P_n(x)= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2+ \cdots + \frac{f^{(n)}}{n!}(x-x_0)^n Pn(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(xx0)n

公式1称为 f ( x ) f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值