机器学习
文章平均质量分 65
JensLee
这个作者很懒,什么都没留下…
展开
-
Attention Map
本文参考:https://www.zhihu.com/search?type=content&q=attention%20maphttps://www.zhihu.com/search?type=content&q=attention%20map计算机视觉中的Attention MapAttention Map是什么?一种特征矩阵的计算方式,凝练出有特点的矩阵数据。有什么作用?这种注意力机制使得卷积运算中,更加关于有效的特征,忽略无效的特征。实现原理是什么?使原创 2021-01-18 11:34:55 · 13028 阅读 · 1 评论 -
机器学习篇:回归与分类的区别
回归与分类不在于输入值,而在于输出值的不同,回归输出的值是连续的,分类输出的值存在离散的。回归问题在回归问题中,我们可以预测房价的变化,未来天气湿度变化等连续性输出的问题。处理回归问题:1.选取训练模型(如线性模型Linear Regression,多项式模型);2.导入训练集train_set;3.选择合适的学习算法;4.对结果进行预测。...原创 2021-01-14 14:04:12 · 1600 阅读 · 0 评论 -
Interpretable Convolutional Neural Networks via Feedforward Design
郭老师的一篇新论文,很有创新性。极大地提升了机器学习的运算效率。Saab transform and bias selection关于在机器学习神经网络,其中的映射公式a与b的选择问题:a的选择:首先设置b=0,a的设置分为两个策略:dc,ac借用于电路理论。dc是直流电,ac是交流电缩写。我们将输入向量作如下处理,直和是一种计算方法:...原创 2020-02-03 18:45:02 · 924 阅读 · 0 评论 -
核函数详解
https://blog.csdn.net/kateyabc/article/details/79980880转载 2019-10-20 22:14:57 · 859 阅读 · 0 评论 -
SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation
本文由国立台湾大学实验室发表。主要内容:根据图片预测人物年龄。主要方法:1.将年龄由回归问题转化为分类问题,使用分段回归预测年龄。2.使用动态范围来包含年龄可能出现的区间,也就是说我预测年龄在[30,33]岁之间,也可以转移到[27,30]之间。论文的第三章:SSR-NET结构与方法简述3.1采用MAE作为损失函数。3.2分段预测将年龄范围定为【0, V】,例...原创 2019-10-15 11:16:11 · 897 阅读 · 0 评论 -
卷积之后的尺寸计算
H,W是卷积之前的尺寸,h,w是卷积之后的尺寸,s是stride如果算出来存在小数,那么就舍弃多余的框原创 2019-09-05 09:41:49 · 5296 阅读 · 0 评论 -
图像分割与目标识别
在对于图像的处理中,图像识别是一个很重要的步骤,例如人脸识别,车牌识别等。图像目标识别有助于此类功能的实现,提高识别效率。目标识别将图像中的各类物品提前识别并且框出,将识别的目标物体图像,送入后续网络层进行处理,有助于提高任务精确度。在人脸识别中,更精准的人脸框图会提高人脸识别效率,通过缩小物体的区域,定位人脸的特征,提高工程的精准度。传统的目标识别都是基于暴力搜索方法,在传统算法中使用了滑动窗口...原创 2019-04-25 14:03:06 · 7509 阅读 · 2 评论 -
FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image
本文来源于2019A类会议CVPR的论文FSA-Net,对其中一部分进行翻译摘要:本文提出了一种基于单个图像的头部姿态估计方法。以往的方法往往是通过landmark或depth估计来预测头部姿态,计算量大。我们的方法是基于回归和特征聚集。为了得到一个紧凑的模型,我们采用了soft stagewise regression方案。现有的特征聚集方法将输入视为一组特征,从而忽略它们在特征图中的空...原创 2019-12-28 10:14:29 · 1300 阅读 · 0 评论 -
fatal error: gcc-plugin.h: 没有那个文件或目录/module 'hdf5' not found:No LuaRocks modul
在运行lua程序的时候,出现报错:module 'hdf5' not found:No LuaRocks module显示报错:/home/zlee/torch/install/bin/lua: /home/zlee/torch/install/share/lua/5.3/trepl/init.lua:389: module 'hdf5' not found:No LuaRocks...原创 2019-04-27 10:36:07 · 2151 阅读 · 2 评论 -
傅里叶变化--小白入门
最近在处理神经网络的时候,看到了小波变换与CNN结合,又看到了傅里叶变化,最终还是下定决心好好学一下傅里叶变化。我从零开始,讲述一下我的学习过程,也让大家同时也能理解傅里叶变化的内容。傅里叶分析包含傅里叶级数与傅里叶变换两部分。本文参考以下博客或者文章:深入理解傅里叶变换 :十分简明易懂的FFT(快速傅里叶变换)深入浅出的讲解傅里叶变换(真正的通俗易懂)时域频域...原创 2019-09-10 10:51:39 · 1130 阅读 · 0 评论 -
AttributeError: 'Tensor' object has no attribute '_keras_history'
在自己搭建模型的时候,遇到了这个问题,这个问题的意思,归根结底是:keras中定义的tensor和tensorflow(theano)当中给的tensor类型是不同的。网上找了几个解决方案,的确都是对的:他们针对的问题是reshape的问题, 我按照提示修改之后,还是报错。最后发现是索引的问题,tensor是能够进行索引的,但是索引也要按照keras的层进行包装,直接利用tensor1[:, ...转载 2019-09-23 12:06:05 · 7496 阅读 · 0 评论 -
机器学习基本小型概念
1.RGB与BGR转换2.tf.Variable与tf.placeholder区别3.matplotlib.pyplot使用方法4.引用: L1距离与L2距离1.均方误差MSE2.tensorflow修改图片大小:img= tf.image.resize_images(original_img, (width, height), 0) 第三个参数为不同的图像修...原创 2019-09-24 10:08:00 · 470 阅读 · 0 评论 -
AttributeError: 'Tensor' object hsa no attribute '_keras_history'
在修改keras模型中的代码,出现了问题。AttributeError: 'Tensor' object hsa no attribute '_keras_history'显示数据没有keras回溯历史。解决方式:加入lambda语句,将要实现的功能,换成lambda语句Lambda在keras.layers.core.py重新声明了。process = Lambda(l...原创 2019-09-25 10:32:55 · 500 阅读 · 0 评论 -
hopenet源代码出现问题,无法运行
RuntimeError: cuda runtime error (59) : device-side assert triggered at因为数据分类问题造成的。在datasets.py中,这是将头部姿态角度进行分类,此处应该是分为了68类,但是在train_hopenet.py中是66类labels = torch.LongTensor(np.digitize([yaw, pi...原创 2019-09-26 15:13:32 · 788 阅读 · 2 评论 -
Tensor,placeholder与Variable区别
import tensorflow as tfa = tf.Variable(1.0,name='a')b = tf.Variable(2.0,name='b')c = tf.add(a,b)sess = tf.Session()sess.run(tf.global_variables_initializer())print(sess.run(c))sess.close()...原创 2019-09-29 16:30:01 · 768 阅读 · 0 评论 -
tf.name_scope与tf.variable_scope区别
命名机制与变量共享Variable 变量 (一般表达参数)、Tensor(操 作输出)、操作 Operation、Placeholder 输 入都有名字当模型复杂的时候,需要有效的命名机制: 方便、清晰TF 中的命名机制有效的命名机制: 起名方便 (不用从 w1 起到 w1024…) 甚至不显式写名,也能自动给个好找的名字 3. 同时避免重名带来的名字冲突TF ...原创 2019-09-29 17:09:11 · 430 阅读 · 0 评论 -
matplotlib.pyplot使用方法
import cv2import numpy as npfrom PIL import Imageimport requestsfrom io import BytesIOimport matplotlibmatplotlib.use('TkAgg')import matplotlib.pyplot as plt def ImageResize(): path = "/...原创 2019-09-30 10:19:15 · 933 阅读 · 0 评论 -
前向分步算法
向前分布算法的具体流程:输入:训练数据集T={(X1,Y1),(X2,Y2),(X3,Y3),......(Xn,Yn)} 损失函数:L(y,f(x)) 基函数集: 输出:加法模型f(x) 算法步骤: 初始化f0(x)=0 对于m=1,2,3,......n 极小化损失函数 得到上面的左边的两个参数 更新 最终得到加法模型...原创 2018-08-17 13:49:11 · 1349 阅读 · 0 评论 -
cuda与cudnn对应关系
Linux版本 Python 版本 编译器 编译工具 tensorflow-1.12.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.11.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 tensorflow-1.10.0 2.7、3.3-3.6 ...转载 2019-04-15 19:46:04 · 22434 阅读 · 0 评论 -
交叉熵与多维度交叉熵
关于交叉熵的定义与解释,请看这篇文章:https://baijiahao.baidu.com/s?id=1618702220267847958&wfr=spider&for=pc给定一个策略, 交叉熵就是在该策略下猜中颜色所需要的问题的期望值。更普遍的说,交叉熵用来衡量在给定的真实分布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出成本的大小。交叉的字面意思在于:...原创 2019-09-24 16:42:22 · 980 阅读 · 0 评论 -
剪枝
将复杂的决策树进行简化的过程称为剪枝,它的目的是去掉一些节点,包括叶节点和中间节点。剪枝常用方法:预剪枝与后剪枝两种。 预剪枝:在构建决策树的过程中,提前终止决策树生长,从而避免过多的节点产生。该方法不实用,我们无法判断何时终止树的生长。 后剪枝:在决策树构建完成后,再去掉一些节点。常见的后剪枝方法有四种:1.悲观错误剪枝(PEP)2.最小错误剪枝(MEP)3....原创 2018-08-20 17:25:37 · 5803 阅读 · 0 评论 -
决策树详解(三)
训练决策树有三个关键问题:1.对于分类树,大量的正常数据在其中之混杂着一个两个的异常数据,所以分类结果很可能认为出现的数据都是正常的。为了避免这种情况的出现,我们设置先验概率(例如根据今天的天气,来预测明天的天气),异常出现的情况,我们人为进行增加,这样决策树就会被适当的增加。设Qj为设置的第j个先验概率,Nj为该分类的样本数,则考虑了样本率并进行归一化处理的先验概率qj为: ...原创 2018-08-20 14:33:42 · 1414 阅读 · 0 评论 -
新手入门:梯度下降算法
梯度下降算法,它主要的实现功能,是一个优化算法,通过给出的实例来不断逼近某个模型。例如用下山的例子来解释梯度下降算法,我们要最快速的下山,第一个是找到最陡的坡,第二个是迈出适当的步伐。两者结合才能达到最快的速度。从山顶下山:1.最陡峭 2.适当步伐。1.如果不是最陡峭的路,那么我们走缓坡,可能会延长路径长度2.如果不是适当步伐,走少了,我们需要多迈步,走多了,我们需要重新规划路...原创 2018-08-28 09:19:31 · 1584 阅读 · 2 评论 -
机器学习零基础初学者入门
机器学习入门系列以本文为主导线,中间穿插着其他概念与网址机器学习概述定义机器学习是一种在没有具体编程的情况下教计算机学习的能力。例如,机器学习通常被用来训练计算机来执行一些难以用编程手段来完成的任务。 学习过程一般来说,无论是人还是机器学习过程大致都分为以下四个步骤:a) 数据累积(data storage):使用观察、记忆和联想的方法来为进一步的推理提供事实依据;...原创 2018-08-23 09:53:03 · 6570 阅读 · 2 评论 -
加法模型
我在参加阿里天池O2O比赛中,遇到了一些问题,还有一些概念。其中运用了xgboost模型,xgboost模型在加法模型与前向分布模型基础上进行了延伸。在这里主要记录加法模型的用途及基本操作。 一.加法模型,顾名思义就是将各种东西加起来求个和,这是大体意思,并不是准确的表达。具体细化到生活中的实例,就比方说你在建一座跨海大桥,需要设计方案,不同的人对此有不同的思路,桥梁专家对于桥梁建设有...原创 2018-08-17 13:25:06 · 6678 阅读 · 1 评论 -
决策树详解(二)
我们根据样本响应值是类的形式还是数值的形式,把决策树分为分类树与回归树。 表示特征属性的形式,也分为类的形式或者数值形式。什么是表示特征属性的形式: 决定今晚是否约妹子,取决于两个条件:1.你约妹子的决心:不想约,有点想,一般想,十分想。四个等级。 ...原创 2018-08-19 23:10:18 · 552 阅读 · 0 评论 -
决策树详解
原文链接:https://blog.csdn.net/zhaocj/article/details/50503450#commentBox 建议阅读此文章的同志们最好拿支笔,拿张纸,把函数抄下来,运算过程跟着算一遍比较好。 一、原理 决策树是一种非参数的监督学习方法,它主要用于分类和回归。决策树的目的是构造一种模型,使之能够从样本数据的特征属性中,通过学习简单的决策规则——...转载 2018-08-19 22:15:20 · 714 阅读 · 0 评论 -
raise TypeError("invalid type comparison") TypeError: invalid type comparison
在用python读取csv文件时,出现了问题,报错如下:类型比较失败。下面是我对于csv文件读取的源代码:off_train = pd.read_csv('data/ccf_offline_stage1_train.csv',header=None)off_train.columns = ['user_id','merchant_id','coupon_id','discoun...原创 2018-08-16 10:04:24 · 6268 阅读 · 0 评论 -
新手入门:感知器
感知机定义:二分类线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1或者-1值。简单来说,就是在平面坐标轴画一条直线,把点分为两类。例如下面的图: 下面是运行程序,只考虑了最简单的模型的实现,针对上面的例题# -*- coding: utf-8 -*-"""Created on Mon Aug 27 15:11:...原创 2018-08-28 10:35:50 · 9730 阅读 · 2 评论 -
我对于神经网络的认识
接触神经网络大半年了,但是对于细节不甚清晰,总有种雾里看花的感觉,今天看了一本书,有一种茅塞半顿开状态,写一下我对于神经网络的理解,主要是讲一下代码细节。训练一个神经网络模型时,我们先定义好如下模型结构,代码都写好了注释。假设是有监督学习,输入训练集与对应的标签,在这里我们定好的神经网络模型就是:#定义一个神经网络的结构def init_network(): #声明一个字...原创 2019-03-20 21:19:07 · 1413 阅读 · 0 评论 -
Deep.Learning.for.Computer.Vision.with.Python.ImageNet.Bundle.2017.9
Deep.Learning.for.Computer.Vision.with.Python.ImageNet.Bundle.2017.9:https://fgk.pw/i/GlQj3Th2213原创 2019-03-16 08:24:28 · 965 阅读 · 0 评论 -
Semantic Segmentation with Deep Learning_ A guide and code
Semantic Segmentation with Deep Learning_ A guide and code:https://fgk.pw/i/OoZObTD5230原创 2019-03-16 00:52:53 · 328 阅读 · 0 评论 -
Deep Learning Tips and Tricks
Deep Learning Tips and Tricks:https://fgk.pw/i/nEmY8u64424原创 2019-03-16 00:49:25 · 383 阅读 · 0 评论 -
深度学习中文版-Deep Learning-Yoshua Bengio.pdf
深度学习中文版-Deep Learning-Yoshua Bengio.pdf:https://fgk.pw/i/Vyywfdr4128原创 2019-03-16 00:47:04 · 8426 阅读 · 1 评论 -
Graph-Based Pattern-Oriented, Context-Sensitive Source Code Completion
本文首先阐述目前存在的IDE中,例如eclipse等等,自动补全代码的效率太低。本论文目的在于提高代码自动补全效率,提高程序员编程效率。要解决的问题:IDE中代码自动补充问题,本文提出了一种新的方法GraPacc来提高IDE代码补全的效率。解决了什么难题,用什么方法克服?提高了IDE代码补全的效率。采用基于API模式的方法,结合其他算法的优点,来进行代码补全。...原创 2019-03-13 18:42:52 · 515 阅读 · 0 评论 -
机器学习-machine learning 课程--期末考试思路整理
对于两个问题我想了一些,写了一部分,大概有两千字左右,希望大家对于两个问题提供不同的思路,一起交流学习,为以后的学弟学妹留下一些参考的想法。其中贝叶斯公式与SVM公式我不贴图了。针对第二题,集成学习方法在一定程度上来说,是很重要的,emmmm,其他的我就不说了Chapter 1 : Introduction In chapter 1, teacher teaches me ...原创 2019-01-07 19:31:29 · 5559 阅读 · 1 评论 -
XGBoost详解
初看Xgboost,翻了多篇博客发现关于xgboost原理的描述实在难以忍受,缺乏逻辑性,写一篇供讨论。——以下是抛砖引玉。 观其大略,而后深入细节,一开始扎进公式反正我是觉得效率不高,还容易打消人的积极性。首先说下决策树 决策树是啥? 举个例子,有一堆人,我让你分出男女,你依靠头发长短将人群分为两拨,长发的为“女”,短发为“男”,你是不是依靠一个指标“头发长短”将人群进行了划...转载 2018-08-17 22:19:03 · 1669 阅读 · 0 评论