算法学习之区间dp加NYOJ-737—石子合并

区间DP

顾名思义,指的是每个区间上的dp,它的主要思想就是先在小区间进行dp得到最优解,然后再利用小区间的最优解合并求大区间最优解。

模板代码:

//先对dp进行赋值,由题意而定
for(int len=2;i<=n;i++)//len代表区间长度,这里表示从区间长度为2的地方开始
{
    for(int i=1;i<=n;i++)//代表每个区间的起点
    {
        int j=i+len-1;//表示区间的终点
        if(j>n)//如果大于n结束
            break;
        for(int k=i;k<j;k++)//这里k表示这个区间的起点i开始枚举每个小区间的点
        {
            dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);
            //dp[i][k]+dp[k+1][j]+w[i][j]表示区间起点i到k的值和下一个点到该长度区间终点的dp值,和每次合并所需要的花费
        }
    }
}

石子合并(一)

时间限制:1000 ms  |  内存限制:65535 KB

难度:3

描述

    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

输入

有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开

输出

输出总代价的最小值,占单独的一行

样例输入

3
1 2 3
7
13 7 8 16 21 4 18

样例输出

9
239

来源

经典问题

思路:我们可以区间dp,可以先计算出1到每个区间点的花费,然后推出状态转移方程

dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];//这里sum[j]-sum[i-1]表示从终点到这个区间起点的合并花费

代码:

#include<map>
#include<stack>
#include<queue>
#include<cmath>
#include<string>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1010;
const int INF=0x3f3f3f3f;
typedef long long ll;
int dp[maxn][maxn];
int sum[maxn];
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int i,j,x;
        memset(dp,INF,sizeof(dp));//将区间值全部赋值为最大值
        memset(sum,0,sizeof(sum));
        for(i=1;i<=n;i++)
        {
            scanf("%d",&x);
            sum[i]=sum[i-1]+x;//计算从1到每个区间的和
            dp[i][i]=0;//本区间值为0
        }
        for(int len=2;len<=n;len++)//len代表区间长度,这里表示从区间长度为2的地方开始
        {
            for(i=1;i<=n;i++)//代表每个区间的起点
            {
                int j=i+len-1;//表示区间的终点
                if(j>n)//如果大于n结束
                    break;
                for(int k=i;k<j;k++)//这里k表示这个区间的起点i开始枚举每个小区间的点
                {
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
                    //dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]表示区间起点i到k的值和下一个点到该长度区间终点的dp值,和每次合并所需要的花费
                }
            }
        }
        /*输出区间值
        for(i=1;i<=n;i++)
        {
            for(j=i+1;j<=n;j++)
            {
                printf("%d %d=%d ",i,j,dp[i][j]);
            }
            printf("\n");
        }
        */
        printf("%d\n",dp[1][n]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值