区间DP
顾名思义,指的是每个区间上的dp,它的主要思想就是先在小区间进行dp得到最优解,然后再利用小区间的最优解合并求大区间的最优解。
模板代码:
//先对dp进行赋值,由题意而定
for(int len=2;i<=n;i++)//len代表区间长度,这里表示从区间长度为2的地方开始
{
for(int i=1;i<=n;i++)//代表每个区间的起点
{
int j=i+len-1;//表示区间的终点
if(j>n)//如果大于n结束
break;
for(int k=i;k<j;k++)//这里k表示这个区间的起点i开始枚举每个小区间的点
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);
//dp[i][k]+dp[k+1][j]+w[i][j]表示区间起点i到k的值和下一个点到该长度区间终点的dp值,和每次合并所需要的花费
}
}
}
石子合并(一)
时间限制:1000 ms | 内存限制:65535 KB
难度:3
描述
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239
来源
思路:我们可以区间dp,可以先计算出1到每个区间点的花费,然后推出状态转移方程
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];//这里sum[j]-sum[i-1]表示从终点到这个区间起点的合并花费
代码:
#include<map>
#include<stack>
#include<queue>
#include<cmath>
#include<string>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1010;
const int INF=0x3f3f3f3f;
typedef long long ll;
int dp[maxn][maxn];
int sum[maxn];
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int i,j,x;
memset(dp,INF,sizeof(dp));//将区间值全部赋值为最大值
memset(sum,0,sizeof(sum));
for(i=1;i<=n;i++)
{
scanf("%d",&x);
sum[i]=sum[i-1]+x;//计算从1到每个区间的和
dp[i][i]=0;//本区间值为0
}
for(int len=2;len<=n;len++)//len代表区间长度,这里表示从区间长度为2的地方开始
{
for(i=1;i<=n;i++)//代表每个区间的起点
{
int j=i+len-1;//表示区间的终点
if(j>n)//如果大于n结束
break;
for(int k=i;k<j;k++)//这里k表示这个区间的起点i开始枚举每个小区间的点
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
//dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]表示区间起点i到k的值和下一个点到该长度区间终点的dp值,和每次合并所需要的花费
}
}
}
/*输出区间值
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
printf("%d %d=%d ",i,j,dp[i][j]);
}
printf("\n");
}
*/
printf("%d\n",dp[1][n]);
}
return 0;
}