自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 卷积神经网络-Datawhale X 李宏毅苹果书 AI夏令营

通过卷积运算提取图像的特征,将输入图像的特征图与多个滤波器(filters)进行卷积操作,输出多个特征图。每个滤波器检测不同的特征。:稀疏连接指的是在卷积神经网络中,每个神经元只与输入的一部分连接,而不是与所有输入相连。:共享参数是指卷积神经网络中,不同位置的神经元使用相同的卷积核参数。:通过增加卷积层的数量,形成深度卷积网络,使得网络能够学习到更加复杂的特征表示。:卷积核是用于卷积操作的矩阵,用来检测图像中的局部特征。:随着网络深度的增加,卷积操作的计算量成倍增加,需要有效的算法和硬件支持来加速计算。

2024-09-03 22:18:49 324

原创 批量归一化-Datawhale X 李宏毅苹果书 AI夏令营

基本过程:

2024-09-03 22:11:13 206

原创 实践方法论-Datawhale X 李宏毅苹果书 AI夏令营

模型优化需要在灵活性与过拟合之间取得平衡。通过数据增广、正则化等技术,可以有效地减少过拟合问题,同时,交叉验证和适当的模型复杂度选择也能帮助提升模型的泛化能力。此外,解决不匹配问题还需要关注训练和测试数据的分布差异,并进行相应的调整。

2024-09-03 21:51:19 276

原创 自适应学习率和分类-Datawhale X 李宏毅苹果书 AI夏令营

RMSProp在AdaGrad的基础上引入了指数加权移动平均的概念,使得学习率可以在整个训练过程中保持稳定,解决了AdaGrad在长时间训练后学习率过低的问题。:综合了AdaGrad和RMSProp的优点,通过计算梯度的一阶矩估计和二阶矩估计,对学习率进行更为精细的调整,进一步提升了优化效果。:AdaGrad根据以往梯度平方和的大小动态调整学习率,使得频繁更新的参数的学习率降低,减少学习的抖动性。:不同的学习率会影响梯度下降的速度和方向,过大的学习率可能会导致模型训练不稳定。

2024-08-31 12:53:37 253

原创 批量和动量-Datawhale X 李宏毅苹果书 AI夏令营

动量法通过考虑前一步的更新方向,来加速梯度下降过程,尤其在凹槽较深的情况下。较小的批量更有助于模型跳出局部最小值,但在一些极端情况下可能导致过度震荡,难以达到全局最优。随着批量大小的增加,计算时间呈现不同趋势。实验表明,在训练不同的模型时,小批量往往能够更快地跳出局部最小值,但在极端情况下(如批量大小极大时),会导致计算效率降低。小批量梯度下降法:结合两者优点,在一定范围内选择批量大小,既平衡计算速度又保证更新稳定性。在计算梯度时,并非使用所有数据来计算损失函数 L,而是将数据分成若干个批量进行处理。

2024-08-27 22:41:30 210

原创 局部极小值和鞍点-Datawhale X 李宏毅苹果书 AI夏令营

在高维空间中,梯度为零的鞍点非常普遍,因此优化问题常常遇到鞍点。:理解梯度和海森矩阵的作用,掌握如何通过特征向量选择更新方向,来在优化过程中有效地降低损失函数并逃离鞍点。:在高维度的神经网络中,鞍点是普遍存在的,需要通过特征值分析和梯度下降等策略来有效地逃离鞍点区域。在高维空间中,局部极小值的判断更加复杂,但通常特征值中既有正值也有负值的点即为鞍点。通过分析损失表面的曲率,可以判断当前的点是否为鞍点,并选择合适的路径来逃离。其中,g是梯度,H是海森矩阵(由二阶导数组成的矩阵,用于判断点的极值性质)

2024-08-27 22:24:44 201

原创 线性模型笔记-Datawhale X 李宏毅苹果书 AI夏令营

Hard Sigmoid 函数的特性是当输入的值,当 x 轴的值小于某一个阈值(某个定值)的时候,大于另外一个定值阈值的时候,中间有一个斜坡。线性模型有很大的限制,这一种来自于模型的限制称为模型的偏差,无法模拟真实的情况。关于模型的变形,还可以把HardSigmoid 可以看作是两个修正线性单元的加总,ReLU 的图像有一个水平的线,走到某个地方有一个转折的点,变成一个斜坡,其对应的公式为。根据真实的数据情况调整写出新的模型,考虑了比较多的信息,加入了更多的权重,在训练数据上应该要得到更好的、更低的损失。

2024-08-26 22:52:19 145

原创 机器学习基础笔记--Datawhale X 李宏毅苹果书 AI夏令营

1、写出一个带有未知参数的函数 f(带有未知参数的函数称为模型,比如y = b + wx1,特征x1已知,w和b为未知参数)不同任务对应不同的函数类型。3、解一个最优化问题(把未知的参数找一组数值出来使损失的值最小;2、定义损失(估测的值和实际值之间的差距,有不同的计算方法,比如平均绝对误差、均方误差)2、当不断调整参数,调整到一个地方,它的微分的值就是这一项,算出来正好是 0 的时候。1、开始会设定说,在调整参数的时候,在计算微分的时候,最多计算几次。机器学习就是让机器具备找一个函数的能力。

2024-08-25 16:33:01 149

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除