代码随想录算法训练营第十一天
LeetCode 20. 有效的括号
题目链接:20. 有效的括号
文章讲解:代码随想录#20. 有效的括号
视频讲解:栈的拿手好戏!| LeetCode:20. 有效的括号
题目描述
给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例1
输入:s = “()”
输出:true
示例2
输入:s = “()[]{}”
输出:true
示例3
输入:s = “(]”
输出:false
提示
- 1 <= s.length <= 10^4
- s 仅由括号 ‘()[]{}’ 组成
思路
括号匹配是一道典型的使用栈结构解决的问题。
经过分析,括号不匹配存在以下三种情况:
- 字符串中左边括号多余
- 字符串中右边括号多余
- 字符串中两边括号个数相等,但类型不匹配
大体思路如下:
首先循环遍历字符串,
当遍历左括号时,则向栈中push对应的右括号,主要是为了后面匹配右括号进行比较。
当遍历右括号时,如果栈为空,则返回false,如果栈不为空,则依次从栈中取出之前存入的右括号与之进行对比,如果相等,则pop,如果不相等,则返回false。
当字符串遍历完成后,对栈进行判断,如果栈不为空,则返回fasle,否则返回true。
当然了这道题还可以进行减枝,因为是括号匹配,则字符肯定为偶数个,如果是奇数,则直接可以返回false了。
参考代码
typedef struct {
int Idx;
char stack[10000]; // 最多元素是10000个,可以使用数组
} Stack;
Stack *stackCreate() {
Stack *obj = (Stack *)malloc(sizeof(Stack));
obj->Idx = 0;
memset(&obj->stack[0], 0, 10000 * sizeof(char));
return obj;
}
void stackPush(Stack* obj, char x) {
obj->stack[obj->Idx++] = x;
}
void stackPop(Stack* obj) {
obj->Idx--;
}
char stackPeek(Stack* obj) {
if (obj->Idx == 0) {
return -1;
}
return obj->stack[obj->Idx - 1];
}
bool isStackEmpty(Stack* obj) {
if (obj->Idx == 0) {
return true;
}
return false;
}
bool isValid(char* s) {
int len = strlen(s);
if (len % 2 != 0) {
return false; // 减枝,匹配的符号需要是偶数个
}
Stack *obj = stackCreate();
for (int i = 0; i < len; i++) {
if (s[i] == '(' || s[i] == '[' || s[i] == '{') { // 比较左括号
if (s[i] == '(') {
stackPush(obj, ')');
} else if (s[i] =='[') {
stackPush(obj, ']');
} else {
stackPush(obj, '}');
}
} else {
if (isStackEmpty(obj) || s[i] != stackPeek(obj)) {
return false;
}
stackPop(obj);
}
}
return isStackEmpty(obj);
}
总结
- 栈数据结构只能解决特定的问题,一般是固定顺序的相邻元素是否相同的问题。
LeetCode 1047. 删除字符串中的所有相邻重复项
题目链接:1047. 删除字符串中的所有相邻重复项
文章讲解:代码随想录#1047. 删除字符串中的所有相邻重复项
视频讲解:栈的好戏还要继续!| LeetCode:1047. 删除字符串中的所有相邻重复项
题目描述
给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例1
输入:“abbaca”
输出:“ca”
解释:
例如,在 “abbaca” 中,我们可以删除 “bb” 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 “aaca”,其中又只有 “aa” 可以执行重复项删除操作,所以最后的字符串为 “ca”。
提示
- 1 <= S.length <= 20000
- S 仅由小写英文字母组成
思路
思路还是和上道题一样,采用栈结构可以完美地解决这道题。
循环遍历整个字符串,依次判断当前字符与栈顶元素,如果相等,则pop,如果不相等,则继续遍历。
遍历结束后,输出栈中的元素,注意顺序。因为我用的是数组模拟栈,所以输出比较方便。
参考代码
typedef struct {
int Idx;
char stack[100000]; // 最多元素是100000个,可以使用数组
} Stack;
Stack *stackCreate() {
Stack *obj = (Stack *)malloc(sizeof(Stack));
obj->Idx = 0;
memset(&obj->stack[0], 0, 1000000 * sizeof(char));
return obj;
}
void stackPush(Stack* obj, char x) {
obj->stack[obj->Idx++] = x;
}
void stackPop(Stack* obj) {
obj->Idx--;
}
char stackPeek(Stack* obj) {
if (obj->Idx == 0) {
return -1;
}
return obj->stack[obj->Idx - 1];
}
bool isStackEmpty(Stack* obj) {
if (obj->Idx == 0) {
return true;
}
return false;
}
char* removeDuplicates(char* s) {
Stack *obj = stackCreate();
int len = strlen(s);
for (int i = 0; i < len; i++) {
if (s[i] == stackPeek(obj)) {
stackPop(obj);
} else {
stackPush(obj, s[i]);
}
}
obj->stack[obj->Idx] = '\0'; // 重新设置字符数组
return obj->stack;
}
总结
- 用例提示中明明写了,字符串最多20000个,所以我在构造数组元素时只定义了20000个。结果力扣上有个极端用例,大小是100000,导致用例没有通过。
好在我的数组是char型的,即使定义成100000级别大小的数组,也没有内存溢出。在我的意识中,像这种万以上级别的数组大小,肯定不能声明数组了,需要从堆中动态分配内存了。
LeetCode 150. 逆波兰表达式求值
题目链接:150. 逆波兰表达式求值
文章讲解:代码随想录#150. 逆波兰表达式求值
视频讲解:栈的最后表演! | LeetCode:150. 逆波兰表达式求值
题目描述
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为 ‘+’、‘-’、‘*’ 和 ‘/’ 。
- 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例1
输入:tokens = [“2”,“1”,“+”,“3”,“*”]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2
输入:tokens = [“4”,“13”,“5”,“/”,“+”]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例3
.>输入:tokens = [“10”,“6”,“9”,“3”,“+”,“-11”,““,”/“,””,“17”,“+”,“5”,“+”]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示
- 1 <= tokens.length <= 104
- tokens[i] 是一个算符(“+”、“-”、“*” 或 “/”),或是在范围 [-200, 200] 内的一个整数
思路
首先得明白什么是逆波兰表达式?
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
这道题的思路是使用栈结构,遍历字符串,如果是数字的话,就入栈,如果是符号的话,就pop出邻近两个数组进行运算,并将结果再次push到栈中,直到字符串遍历完,此时再pop出栈中的数字。
参考代码
typedef struct {
int Idx;
int stack[10000]; // 最多元素是10000个,可以使用数组
} Stack;
Stack *stackCreate() {
Stack *obj = (Stack *)malloc(sizeof(Stack));
obj->Idx = 0;
memset(&obj->stack[0], 0, 10000 * sizeof(char));
return obj;
}
void stackPush(Stack* obj, int x) {
obj->stack[obj->Idx++] = x;
}
int stackPop(Stack* obj) {
obj->Idx--;
return obj->stack[obj->Idx];
}
int evalRPN(char** tokens, int tokensSize) {
Stack *obj = stackCreate();
for (int i = 0; i < tokensSize; i++) {
if (!strcmp(tokens[i], "+") || !strcmp(tokens[i], "-") ||
!strcmp(tokens[i], "*") || !strcmp(tokens[i], "/")) {
int numb = stackPop(obj);
int numa = stackPop(obj);
int nums;
if (!strcmp(tokens[i], "+")) {
nums = numa + numb;
} else if (!strcmp(tokens[i], "-")) {
nums = numa - numb;
} else if (!strcmp(tokens[i], "*")) {
nums = numa * numb;
} else {
nums = numa / numb;
}
stackPush(obj, nums);
} else {
stackPush(obj, atoi(tokens[i]));
}
}
return stackPop(obj);
}
总结
- 忽然觉得自己实现栈的操作过程挺有趣的,也没有办法,对C语言来说,尽可能自己动手,库函数真是少得可怜啊。