代码随想录算法训练营第二十三天
LeetCode 669. 修剪二叉搜索树
题目链接:669. 修剪二叉搜索树
文章讲解:代码随想录#669. 修剪二叉搜索树
视频讲解:你修剪的方式不对,我来给你纠正一下!| LeetCode:669. 修剪二叉搜索树
题目描述
给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
示例1
输入:输入:root = [1,0,2], low = 1, high = 2
输出:[1,null,2]。
示例2
输入:root = [3,0,4,null,2,null,null,1], low = 1, high = 3
输出:[3,2,null,1]
提示
- 树中节点数在范围 [1, 10^4] 内
- 0 <= Node.val <= 10^4
- 树中每个节点的值都是 唯一 的
- 题目数据保证输入是一棵有效的二叉搜索树
- 0 <= low <= high <= 10^4
思路
愣一看没啥思路,感觉就是要重构二叉树呢,直接上两张图思路立马就清晰了。
对于上图的二叉树,节点0和节点4不符合要求,需要将节点0的右孩子节点2指向节点3的左孩子,节点3的右孩子指向NULL。
递归参考代码
struct TreeNode* trimBST(struct TreeNode* root, int low, int high) {
if (root == NULL) return root;
if (root->val < low) { // 节点小于最小值,向右孩子遍历,找到符合区间的节点
return trimBST(root->right, low, high);
}
if (root->val > high) { // 节点大于最大值,向左孩子遍历,找到符合区间的节点
return trimBST(root->left, low, high);
}
root->left = trimBST(root->left, low, high);
root->right = trimBST(root->right, low, high);
return root;
}
LeetCode 108.将有序数组转换为二叉搜索树
题目链接:108.将有序数组转换为二叉搜索树
文章讲解:代码随想录#108.将有序数组转换为二叉搜索树
视频讲解:构造平衡二叉搜索树!| LeetCode:108.将有序数组转换为二叉搜索树
题目描述
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
示例1
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9]
示例2
nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
提示
- 1 <= nums.length <= 10^4
- -10^4 <= nums[i] <= 10^4
- nums 按 严格递增 顺序排列
思路
有序数组刚好符合二叉搜索的顺序,那么这道题的关键是找到有序数组的中间元素作为树的中间节点,然后递归遍历其左区间和右区间。
注意寻找中间节点时区间是左闭右开,还是左闭右闭,以及终止条件为left>right。
参考代码
struct TreeNode* traversal(int *nums, int left, int right)
{
if (right < left) return NULL;
int middle = (right + left) / 2;
struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));
node->val = nums[middle];
node->left = traversal(nums, left, middle - 1);
node->right = traversal(nums, middle + 1, right);
return node;
}
struct TreeNode* sortedArrayToBST(int* nums, int numsSize) {
return traversal(nums, 0, numsSize - 1);
}
LeetCode 538.把二叉搜索树转换为累加树
题目链接:538.把二叉搜索树转换为累加树
文章讲解:代码随想录#538.把二叉搜索树转换为累加树
视频讲解:LeetCode:538.把二叉搜索树转换为累加树
题目描述
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
示例1
输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
示例2
输入:root = [0,null,1]
输出:[1,null,1]
提示
- 树中的节点数介于 0 和 10^4 之间。
- 每个节点的值介于 -10^4 和 10^4 之间。
- 树中的所有值 互不相同 。
- 给定的树为二叉搜索树。
思路
二叉搜索树是有序数,观察示例中的累加树,其实就是从树的右叶子节点进行累加,累加的顺序为右中左。
参考代码
int val;
void traversal(struct TreeNode* cur)
{
if (cur == NULL) return;
// 遍历顺序:右中左
if (cur->right) {
traversal(cur->right);
}
cur->val += val;
val = cur->val;
if (cur->left) {
traversal(cur->left);
}
}
struct TreeNode* convertBST(struct TreeNode* root) {
val = 0;
traversal(root);
return root;
}
总结
- 对cur->right和cur->left的判断可以删除了,因为递归的终止条件已经进行了判空处理了。
- 代码看起来挺简单的,但是推导起来还是一层套一层的,这不是递归思想,所以写代码前一定要考虑清楚思路,也就递归三部曲。