There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.
We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.
The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.
The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.
Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.
5 20 30 10 50 40
4
4 200 100 100 200
2
Note
In the first sample, the optimal order is: 10, 20, 30, 40, 50.
In the second sample, the optimal order is: 100, 200, 100, 200.
仔细观察后易发现,对于一个不含重复元素的集合来说,产生的最大幸福度是集合元素个数-1;那么只要把输入元素划分为数个不含相同元素的集合,分别求解即可;
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
scanf("%d",&n);
bool s[1001][1001]={0};
int num[1001]={0};
int col=0;
int temp;
for(int i=0;i<n;++i)
{
scanf("%d",&temp);
for(int j=1;j<=1000;++j)
{
if(s[j][temp]==0)
{
s[j][temp]=1;
++num[j];
if(j>col)
++col;
break;
}
}
}
int ans=0;
for(int i=1;i<=col;++i)
{
ans+=num[i]-1;
}
printf("%d\n",ans); return 0;
}
本文探讨了一个有趣的问题:如何排列一系列不同美观度的画作,使得观众从一幅画走到更美的另一幅画时感到快乐的次数最多。通过合理的分组与排序策略,可以达到这一目的。
610

被折叠的 条评论
为什么被折叠?



