codeforces #345 div.2 B Beautiful Paintings

本文探讨了一个有趣的问题:如何排列一系列不同美观度的画作,使得观众从一幅画走到更美的另一幅画时感到快乐的次数最多。通过合理的分组与排序策略,可以达到这一目的。
B. Beautiful Paintings
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes happy every time he passes from a painting to a more beautiful one.

We are allowed to arranged pictures in any order. What is the maximum possible number of times the visitor may become happy while passing all pictures from first to last? In other words, we are allowed to rearrange elements of a in any order. What is the maximum possible number of indices i (1 ≤ i ≤ n - 1), such that ai + 1 > ai.

Input

The first line of the input contains integer n (1 ≤ n ≤ 1000) — the number of painting.

The second line contains the sequence a1, a2, ..., an (1 ≤ ai ≤ 1000), where ai means the beauty of the i-th painting.

Output

Print one integer — the maximum possible number of neighbouring pairs, such that ai + 1 > ai, after the optimal rearrangement.

Examples
input
5
20 30 10 50 40
output
4
input
4
200 100 100 200
output
2

Note

In the first sample, the optimal order is: 10, 20, 30, 40, 50.

In the second sample, the optimal order is: 100, 200, 100, 200.



仔细观察后易发现,对于一个不含重复元素的集合来说,产生的最大幸福度是集合元素个数-1;那么只要把输入元素划分为数个不含相同元素的集合,分别求解即可;



#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    bool s[1001][1001]={0};
    int num[1001]={0};
    int col=0;
    int temp;
    for(int i=0;i<n;++i)
    {
        scanf("%d",&temp);
        for(int j=1;j<=1000;++j)
        {
            if(s[j][temp]==0)
            {
                s[j][temp]=1;
                ++num[j];
                if(j>col)
                    ++col;
                break;
            }
        }
    }
    int ans=0;
    for(int i=1;i<=col;++i)
    {
        ans+=num[i]-1;
    }
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值